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Channeling in a short bent silicon crystal was investigated at the CERN SPS using 400-GeV/c protons
with an angular spread much narrower than the critical channeling angle. Particle dechanneling due to
multiple scattering on the atomic nuclei of the crystal was observed and its dechanneling length was
measured to be about 1.5 mm. For a crystal with length comparable to such dechanneling length, an
efficiency of 83.4% was recorded, which is close to the maximum value expected for a parallel beam and
exceeds the previously known limitation of deflection efficiency for long crystals.

© 2009 Elsevier B.V. All rights reserved.

High-energy charged particles entering the crystal with angles
relative to the crystal planes smaller than the critical channel-
ing angle 6, = (2Ug/pv)!/?, where p, v are the particle momen-
tum and velocity and Ug the well depth of the crystal potential
averaged along the planes, can be captured into the channeling
regime [1]. Channeled particles move through a crystal oscillat-
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ing between two neighboring planes. The averaged planar poten-
tial gives an approximate description of channeling, in which the
transverse energy of particles is the motion integral. Collisions
with atomic electrons and nuclei of the crystal change the trans-
verse energies of particles and as a result they leave the channels
(dechanneling).

The average square of the angle of particle multiple scattering
on the crystal electrons (MSE) and nuclei (MSN) is proportional
to their local density [1,2]. The atomic nuclei density is quickly
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reduced with the distance x from the planes according to a Gaus-
sian distribution Py (x) ~ exp(—x?/u?), where u; =+/2u; and u;
is the amplitude of the thermal vibrations of the crystal atoms. The
amplitude uq determines the “nuclear corridor” width where par-
ticles undergo a strong MSN. It is much smaller than the channel
width dj, for the main crystal planes. For instance, for the (110)
silicon channels at the room temperature one has 6uq/dp, = 0.23.
In the central areas of the planar channels particles undergo only
scattering on the crystal electrons. The average square of the MSE
angle is considerably smaller than for MSN. The critical approach
distance to the crystal planes rq(u1) is used to determine the
boundary of the area of the stable channeling states with the par-
ticle oscillation amplitudes Xy < Xpuc =d,/2 — rc (the coordinate
X is measured from the channel center X = x — dp/2). Particles
leave the stable channeling states through multiple scattering on
the crystal electrons. The process has the exponential character,
N (2) ~ exp(—z/Le), where L, is the “electronic” dechanneling
length due to MSE.

Particles with the large oscillation amplitudes X > X quickly
leave the bound states through a strong MSN near the channel
walls. This process can be also characterized by “nuclear dechan-
neling length” L, < L. [3]. So, the dechanneling process has two
stages. In the first stage particles leave the stable states due to
MSE and then they leave the unstable bound states with xp; > Xpmc
mainly due to MSN, therefore the total dechanneling length L; =
Le + Ly. In all previous measurements with high-energy charged
particles [4-9] the crystals with length L > L, were used. The
measured value L4, which characterizes the channeled fraction
reduce with the beam penetration depth into the crystal, gives
the electronic dechanneling length because L; = L. + L, ~ Le.
For 400-GeV/c protons in straight (110) silicon crystal L. should
be about 20 cm according to the extrapolation of the available
data [7].

Bent crystals can deflect high-energy charged particles being
in channeling states [10]. The crystal bend gives the angular un-
folding of the dechanneling process because particles dechanneled
at the crystal depth [ are deflected by the angle 6 =I/R, where
R is the crystal bend radius. This was used to measure the elec-
tronic dechanneling length in [5,8]. The experimental data [8] have
shown that a good approximation for the critical approach distance
is rc = 2.5u1. The crystal bend reduces the dechanneling length of
particles mainly due to the decrease of the potential well depth,
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Fig. 1. The effective potentials for the (110) planes of a silicon crystal bent with
the radius R =38 m. The coordinate x is measured in the direction opposite to the
radial one, d, =1.92 A is the channel width. Uy, = 21.7 eV is the depth of the
planar potential well, r, = 2.5u; = 0.1875 A is the critical approach distance. Exc =
Ues(rc) =13.52 eV is the critical transverse energy for stable channeling states.

Lg(R) & Lg(c0)(1 — R¢/R)?, but when R >> R, where R is the crit-
ical bend radius [10], the dechanneling length is about the same as
in the straight crystal.

In the present work, a short bent crystal of a length close to
L, was used to study the deflection of 400 GeV/c protons. The
fast dechanneling stage due to MSN was detected and a record
value of the deflection efficiency Py was measured, which sur-
passes the known limitation for long crystals (see Eq. (4) be-
low).

The effective planar potential Ue (see Fig. 1), which governs
the transverse particle motion, has a full depth of Uy, (R) that de-
pends on the crystal radius of curvature R. Particles with an initial
transverse energy Ey, not exceeding U,,(R) are captured into the
bound states with the planar channels. In the first approximation,
the deflection efficiency value P4 of particles by a bent crystal is
the product of the capture efficiency P, into the bound states and
the probability Py, = exp(—L/L. ) to keep particles in the states
during the whole crystal length

Use(R)
Pq(R) ~ f(Exo) dExo - exp(—L/Le(R))

0
Uop(R)

+ / f(Exo)dExo 'eXP(_L/Ln(R))» (1)
Exc(R)

where f(Eyo) is the distribution of the initial transverse energy of
particles at the crystal entrance, Exc(R) = Ugf(r¢, R) is the critical
transverse energy for the stable channeling states. In long crystals,
with length L > L, only particles captured into the stable chan-
neling states with the initial transverse energies Ex, < Exc can be
deflected. Probability to be in the stable channeling states is lim-
ited by dechanneling of particles due to MSE. Therefore, a good
approximation for the deflection efficiency in this case is given by
the first term of (1)

Py(R) =~ Pc(Exo < Exc) - Pen(Le)
Exc(R)
= / f(Exo)dExo - exp(—L/Le). (2)
0]

This also implies that the deflection efficiency is smaller than the
capture efficiency of particles into the stable channeling states

Pg < Pc(Exo < Exc). (3)

The value of P. is maximal for a parallel beam aligned with the
crystal planes. Its upper limit is realized in a straight crystal and,
in the case of (110) silicon channels, is

Pc=1-2r/d, =0.805. (4)

The maximum value of P; measured in long silicon crystals
is about 50%, as reported in [6]. The data were collected using a
silicon crystal 50 mm long, (111) oriented, with a bend angle of
1.4 mrad, interacting with an incoming beam of 450-GeV/c pro-
tons with a narrow angular spread (RMS = 3 prad).

Our experimental setup was the same described in [11]. Four
microstrip silicon detectors, two upstream and two downstream
of the crystal, were used to detect the particle trajectories with
an angular resolution of 3 prad, which is limited by the multiple
scattering of particles in the detectors and the air.

A 70x1.94x0.5 mm? silicon strip crystal with the largest faces
parallel to the (110) crystallographic planes was fabricated accord-
ing to the methodology described in [12,13]. The strip-crystal was
bent along its length and placed vertically, so that the induced
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Fig. 2. The distribution of deflection angles for 400-GeV/c protons in the silicon
crystal bent along (110) planes, the crystal length is 1.94 mm. Only particles hitting
the crystal with the horizontal and vertical angles |6xo|, |0y, < 5 nrad were selected.
(a) The deflected fraction 76.6% is hatched. (b) Logarithmic scale along Y axis. The
exponential fit, which gives the nuclear dechanneling length, is shown by the line
between the two maxima.

anticlastic bending along the crystal width was used to deflect par-
ticles in the horizontal plane (see Fig. 2b in [11]). Note that the
first use of strip crystals with anticlastic curvature was reported
in [14].

The beam of 400-GeV protons had the RMS values of the hor-
izontal and vertical angular divergence of oy = (9.27 + 0.06) prad
and oy = (5.24 £ 0.03) prad, respectively. A high precision go-
niometer, with an accuracy of 2 prad, was used to orient the (110)
crystal planes parallel to the beam direction. An angular scan was
performed and the optimal orientation was selected, which gives
the maximum of the deflected beam fraction. Figs. 2a and b show,
in linear and semi-logarithmic scale respectively, the distribution
of the particle deflection angles at the optimal crystal orientation
for the incident beam fraction with horizontal and vertical angles
in the range |0xol, 10yo| <5 prad. A Gaussian fit of the right peak
provides the mean value 63 = (50.5 & 0.1) prad and the RMS de-
viation o4 = (5.67 4= 0.04) prad of the beam fraction deflected by
channeling. In the assumption of a uniform bending, the anticlas-
tic bend radius is R = T/0; = 38 m, where T = 1.94 mm is the
crystal length along the beam direction. The fraction of particles
deflected by angles greater than 6; — 304 (hatched area in Fig. 2a)
determines the deflection efficiency Pg4. For the considered case
Py = (75.2 % 0.7sta £ 0.55y51)%.

The peak on the left side in Figs. 2a and b is due to particles,
which were not captured into the channeling states at the crys-
tal entrance. They were deflected in the opposite direction due to
volume reflection [3]. Particles with deflection angles between the
two maxima in Figs. 2a and b are the dechanneled ones, which
were lost due to the MSN. Using the relation | = RO between the
deflection angle 6 and crystal length | traversed by a particle be-
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Fig. 3. (Color online.) The deflection efficiency for a narrow beam fraction, which
is inside an angular window of 2 prad width, as a function of the window center
position. The maximum value of the efficiency is (83.4 £ 1.65tat & 0.95yst)%. Circles
indicate the simulation results.

fore the dechanneling event, the exponential fit of the area of
dechanneling (see the line in Fig. 2b) gives the value of the nu-
clear dechanneling length L, = (1.53 £ 0.355¢a¢ £ 0.205ys¢) mm. The
simulation results based on the model described in [15], in which
the average square of multiple scattering angle on the crystal nu-
clei is proportional to the density of nuclei [2] 9_,12 ~ Py(x), gives a
close value L, = 1.5 mm.

The deflection efficiency as a function of the incident angle
of particles was studied by selecting different angular fractions
of the incident beam. The fractions of particles with horizon-
tal incident directions inside contiguous angular windows each of
2 prad width were selected. Fig. 3 shows the measured deflec-
tion efficiency values (blue squares interconnected by segments)
for each beam fraction as a function of the window center posi-
tion. The maximum value of the deflection efficiency correspond-
ing to the optimal choice of the incoming particle directions is
Py = (83.4%1.65tat £0.95ys¢)%. Such a value is much larger than the
upper limit value for long crystals (4). The simulation results are
shown in Fig. 3 as circles interconnected by segments. The agree-
ment of simulation and experimental results is rather good in a
wide range of incident angles, around the incoming beam axis. The
selected angular window width of 2 prad is much smaller than the
critical channeling angle, whose value is 6., = 10.4 prad. For this
reason, the observed deflection efficiency is close to its maximum
value for a parallel beam.

The measurements have been also performed with a quasimo-
saic silicon crystal [16] 0.84 mm long, bent along (111) planes with
the radius R = 11.2 m, resulting in a deflection efficiency of 72%.
This is a high value, considering that the stronger bend caused the
decrease of the channel potential depth with respect to the above-
mentioned case of the short strip crystal.

Short bent crystals producing small deflection angles, as the
crystals used in our experiment, are expected to be fully ade-
quate for beam halo collimation [17]. The crystal deflector as a
primary collimator instead of a solid target directs the collider
beam halo particles deeply onto the absorber. This should sig-
nificantly improve the collimation efficiency. The key factor for
this purpose is the value of possible deflection efficiency for the
beam halo particles, which cross the crystal with a small angular
spread.

Our experimental results show that the deflection efficiency
limit of higher than 80% for a nearly parallel beam predicted
by theory in a single passage through a short crystal is really
achievable. A fast stage of particle dechanneling due to multiple
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scattering on the atomic nuclei has been observed. The measured
value of nuclear dechanneling length allows estimating the deflec-
tion efficiency for all possible applications of short crystal deflec-
tors.

Acknowledgements

We are grateful to Professor L. Lanceri (INFN & University of
Trieste) who provided the tracking detectors, to V. Carassiti and
M. Melchiorri for the design and fabrication of the crystal holders.
We acknowledge partial support by the INFN NTA-HCCC and MIUR
2006028442 projects, the INTAS program, the Russian Foundation
for Basic Research Grants 05-02-17622 and 06-02-16912, the RF
President Foundation Grant SS-3057-2006-2, Program “Fundamen-
tal Physics Program of Russian Academy of Sciences” and the grant
RFBR-CERN 08-02-91020.

References

[1] J. Lindhard, K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 34 (14) (1965).
[2] M. Kitagava, Y.H. Ohtsuki, Phys. Rev. B 8 (1973) 3117.
[3] A.M. Taratin, W. Scandale, Nucl. Instrum. Methods Phys. Res., Sect. B 262 (2007)
340.
[4] N.K. Bulgakov, et al., JINR Communications 1-83-725, Dubna (1983).
[5] J.E. Bak, et al., Nucl. Phys. B 242 (1984) 1.
[6] A. Baurichter, et al., Nucl. Instrum. Methods B 164-165 (2000) 27.
[7] ].S. Forster, in: RA. Carrigan Jr,, ]. Ellison (Eds.), Relativistic Channeling, Plenum
Press, New York, 1987, p. 39.
[8] J.S. Forster, et al., Nucl. Phys. B 318 (1989) 301.
[9] V.M. Biryukov, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 86 (1994) 245.
[10] E.N. Tsyganov, Preprints TM-682, TM-684, Fermilab, Batavia (1976).
[11] W. Scandale, et al., Phys. Rev. Lett. 101 (2008) 234801.
[12] S. Baricordi, et al., Appl. Phys. Lett. 91 (2007) 061908.
[13] S. Baricordi, et al., J. Phys. D: Appl. Phys. 41 (2008) 245501.
[14] A.G. Afonin, et al., JETP Lett. 67 (1998) 781.
[15] A.M. Taratin, Phys. Part. Nucl. 29 (1998) 437.
[16] Yu.M. Ivanov, A.A. Petrunin, V.V. Skorobogatov, JETP Lett. 81 (2005) 99.
[17] V.M. Biryukov, et al., Nucl. Instrum. Methods B 234 (2005) 23.



	Observation of nuclear dechanneling for high-energy protons in crystals
	Acknowledgements
	References


