Measuring Two Photon Exchange with

Rebecca Russell

Massachusetts Institute of Technology for the Olympus collaboration

July 9, 2012 Petersburg Nuclear Physics Institute

Proton form factors

- Study with elastic ep scattering
- The Rosenbluth separation method at constant Q^2

Rosenbluth Formula

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \frac{G_E^2 + \frac{\tau}{\varepsilon}G_M^2}{1+\tau}$$
 where $\tau = Q^2/4M^2$ and $\varepsilon = [1+2(1+\tau)\tan^2(\theta/2)]^{-1}$

New techniques with polarized beams and targets

Form factor ratio from polarization transfer

$$\frac{G_E}{G_M} = \frac{\mathcal{P}_t}{\mathcal{P}_\ell} \times \text{(kinematic factor)}$$

Form factor ratio discrepancy

The two methods do not agree!

Large two-photon exchange correction to Rosenbluth data?

Measuring the two-photon effect

Odd lepton-sign power in interference term

$$\sigma_{e^{\pm}p} = |\mathcal{M}_{1\gamma}|^2 \pm 2\Re{\{\mathcal{M}_{1\gamma}^{\dagger}\mathcal{M}_{2\gamma}\}} + \cdots$$

 \bullet e^+/e^- ratio sensitive to two-photon contribution

$$rac{\sigma_{e^+
ho}}{\sigma_{e^-
ho}}pprox 1+4rac{\Re\{\mathcal{M}_{1\gamma}^\dagger\mathcal{M}_{2\gamma}\}}{|\mathcal{M}_{1\gamma}|^2}$$

Status of measurements

■ No precise measurements at low ε or high Q^2

The OLYMPUS experiment

$$\mathsf{E} = 2 \; \mathsf{GeV}$$
 0.6 $\mathsf{GeV^2} \leq Q^2 \leq 2.2 \; \mathsf{GeV^2}$ 0.3 $\leq \varepsilon \leq 0.9$ Measure ratio to $< 1\%$

■ Two other ongoing experiments: at JLab and Novosibirsk

Conception of the experiment

Large acceptance spectrometer
 BLAST at MIT-Bates

 2 GeV electrons and positrons at up to 100 mA
 DORIS at DESY

- BLAST moved to Hamburg, Germany
- Upgrades and new sub-detectors

Toroidal magnet

- 8 copper coils
- 75% field

■ $\pm 5,000$ A current → maximum 2.8 kG B-field

Internal hydrogen target

Open-ended target cell

- 9 mm×27 mm cross section, 60 cm long
- 10¹⁵ atoms/cm² thickness
- 99.99998% pure H₂

Internal hydrogen target

Hydrogen distribution:

Acceptance:

- $20^{\circ} < \theta < 80^{\circ}$
- ${\color{red} \blacksquare}$ -15° $<\phi<$ 15°

Time of flight detectors

- Full acceptance of drift chambers
- 36 vertical scintillator bars
- Kinematic trigger

Time of flight detectors

Photo: A. Schmidt

Measuring the cross section ratio

Small asymmetries in detector setup?

Measure the superratio

$$\frac{\sigma_{e^{+}}}{\sigma_{e^{-}}} = \sqrt{\frac{n_{(e^{+},\uparrow)}n_{(e^{+},\downarrow)}}{n_{(e^{-},\uparrow)}n_{(e^{-},\downarrow)}} \cdot \frac{n_{(e^{-},\uparrow)}^{\text{lumi}}n_{(e^{-},\downarrow)}^{\text{lumi}}}{n_{(e^{+},\uparrow)}^{\text{lumi}}n_{(e^{+},\downarrow)}^{\text{lumi}}}}$$

- Switch beam species regularly
- Switch magnet polarity regularly

Measuring the cross section ratio

Variance in beam current and target density?

Measure the luminosity

$$\frac{\sigma_{e^{+}}}{\sigma_{e^{-}}} = \sqrt{\frac{n_{(e^{+},\uparrow)}n_{(e^{+},\downarrow)}}{n_{(e^{-},\uparrow)}n_{(e^{-},\downarrow)}} \cdot \frac{n_{(e^{-},\uparrow)}^{\text{lumi}}n_{(e^{-},\downarrow)}^{\text{lumi}}}{n_{(e^{+},\uparrow)}^{\text{lumi}}n_{(e^{+},\downarrow)}^{\text{lumi}}}}$$

- Beam and target measurements
- Luminosity monitors

12° luminosity monitors

12° luminosity monitors

Pair of tracking telescopes

Two systems:

- 3 GEMs (100 mm × 100 mm)
- 3 MWPCs (105 mm × 105 mm)

12° luminosity monitors

Photo: O. Ates

- Elastic ee scattering
- 1.3° from beam line

 → symmetric
- Pure QED calculable
- Coincidence
 - $\rightarrow \text{low background}$

Photo: R. Perez-Benito

OLYMPUS with sub-detector frame out

OLYMPUS with sub-detector frame in

OLYMPUS first run

- Month-long run in February 2012
- Successful start of data collection

Analysis underway

OLYMPUS timeline

OLYMPUS full proposal	September 2008
Experiment funded by DOE	January 2010
■ BLAST moved to Germany	Spring 2010
■ Target test experiment	February 2011
Drift chambers installed	Spring 2011
■ 12° luminosity monitors installed	Summer 2011
■ OLYMPUS rolled in to DORIS beam line	July 2011
■ First full OLYMPUS test experiment	August 2011
Symmetric Møller/Bhabha installed	Fall 2011
■ First data run	February 2012
Tracking detector upgrade	Summer 2012
■ Second data run	October-December 2012
DORIS retires	2013

Track selection

Tree search algorithm

M. Dell'orso and L. Ristori, "A Highly Parallel Algorithm for Track Finding", *Nucl. Inst. Meth.* **A287**, (1990) 436-338

- Removes noise
- Reduces combinatorics
- Fast
- Estimate of starting parameters

Tracking

- Combine DC+ToF tracks with 12° detectors
- All OLYMPUS detectors in Monte Carlo
 - \rightarrow Use to reconstruct track parameters
- Two error-estimation methods:
 - Global fit
 - Kalman filter
- Iterative process to find time-to-distance for drift chambers
- Simulation of field and electron drift in gas (Garfield/Magboltz)

Radiative Corrections

What are we trying to measure?

Hard part of two photon exchange correction to elastic ep

- Lots of other radiative corrections that contribute
- Generally taken into account with:
 - L. W. Mo and Y. S. Tsai, "Radiative Corrections to Elastic and Inelastic ep and νp Scattering" Rev. Mod. Phys. 41, 205 (1969)
 - L.C. Maximon and J. A. Tjon "Radiative corrections to electron-proton scattering" *Phys. Rev. C* **62**, 054320 (2000)
- Note: Papers have different separation of hard and soft TPE
- Want to use well-established physics only in primary result

Corrections with a second virtual photon (elastic)

- Soft parts contain IR divergences
- All even in lepton sign except TPE

- Maximon and Tjon calculate structure-dependent part of the proton vertex
- Negligible in ratio at OLYMPUS energies

Corrections with a real photon (bremsstrahlung)

■ Most important correction

- IR divergences cancel exactly with those from virtual photon
- Depends fundamentally on details of the experimental setup
- Use generator with Monte Carlo → analyze just like data

Radiative Corrections

■ Maximon and Tjon estimate:

Ratio just from radiative corrections is 1.08 at large angles

Larger correction with higher resolution

Two important things to take away:

- Radiative corrections will be different for each experiment and can't be easily implemented by third parties
- Radiative corrections for all experiments must be consistent so results are comparable

The OLYMPUS Collaboration

Members from...

- Arizona State University, USA
- DESY, Hamburg, Germany
- Hampton University, USA
- INFN Bari, Ferrara, and Rome, Italy
- MIT and MIT-Bates, USA
- Petersburg Nuclear Physics Institute, Russia
- University of Bonn, Germany
- University of Glasgow, United Kingdom
- University of Mainz, Germany
- University of New Hampshire, USA
- Yerevan Physics Institute, Armenia