Исследование взаимодействия нейтрино с ядрами ⁷¹Ga, ⁷⁶Ge, ¹²⁷I, ^{128,130}Te

1.3.15 — Физика атомных ядер и элементарных частиц, физика высоких энергий

> Фазлиахметов Алмаз Наилович ИЯИ РАН, НИЦ Курчатовский институт

> > Научный руководитель: д-р физ.-мат. наук Лубсандоржиев Баярто Константинович

Сечение захвата нейтрино

$$\nu_{e} + A(N,Z) \to e^{-} + A(N-1,Z+1)$$

$$\sigma_{discr}(E_{\nu}) = \frac{1}{\pi} \sum_{k} G^{2} p_{e} E_{e} F(Z,E_{e}) [B(F)_{k} + (\frac{g_{A}}{g_{V}})^{2} B(GT)_{k}]$$
кинематический
член
Ферми-функция: кулоновское
взаимодействие е⁻ с полем ядра

Переходы Ферми:
$$\Delta I = 0, \frac{P_i}{P_f} = 1,$$

 $\Sigma B(F) = N - Z$

$$\sigma_{total}(E_{\nu}) = \sigma_{diskr}(E_{\nu}) + \sigma_{res}(E_{\nu})$$

Получение значений B(GT) и B(F)

- из периода полураспада
- зарядово-обменные реакции: A(N,Z)+p → A(N-1,Z+1)+n и A(N,Z)+³He → A(N-1,Z+1)+t
- теоретические расчеты: оболочечная модель, метод случайных фаз, микроскопической теории ядра и др.

$$g_V^2 B(F_-) + g_A^2 B(GT_-) = \frac{K}{ft}$$

$$\left. \frac{d\sigma}{d\Omega} \right|_{q=0} = \hat{\sigma}_{\rm GT} B(\rm GT)$$

Источники электронных нейтрино

Искусственные радиоактивные источники: 37Ar, 51Cr, 65Zn...

Isotope	$\tau_{1/2}$ (d)	E_{ν} (keV)	$f_{E_{v}}$ (%)
³⁷ Ar	35.0	813.8	1.11 ± 0.01
		813.5	$8.66~\pm~0.01$
		810.7	90.23 ± 0.01
⁵¹ Cr	27.7	752.4	$1.40~\pm~0.01$
		751.8	8.42 ± 0.01
		746.5	80.25 ± 0.01
		432.3	0.15 ± 0.01
		431.7	$0.92~\pm~0.01$
		426.4	$8.86~\pm~0.01$

Ускорители: SNS (Spallation Neutron Source) и др.

Солнечные нейтрино

Спектр нейтрино от солнца, модель BS05(OP)

Актуальность работы

- Сечение захвата нейтрино можно записать в виде произведения атомных и кинематических факторов и квадратов ядерных матричных элементов. Величина и энергетическая зависимость σ(*E*) описывается зарядовообменной силовой функции S(E), которая характеризует интенсивность переходов в конечном ядре в зависимости от энергии возбуждения. Силовая функция S(E) имеет резонансный характер, и её резонансная структура влияет на сечения нейтринного захвата $\sigma(E)$.
- Изотопы ⁷¹Ga, ⁷⁶Ge, ¹²⁷I, ^{128,130}Te являются популярными кандидатами в качестве мишеней для в детекторах действующих и планируемых международных нейтринных экспериментов, направленных на поиск процесса процесса двойного безнейтринного бета-распада, темной материи, стерильных нейтрино и др. Задача исследования взаимодействия нейтрино с атомными ядрами и учет эффектов влияющих на вероятности таких процессов имеет большое значение при моделировании и обработке данных экспериментов.

COHERENT Nal detector SAGE\BEST (~50 т. ⁷¹Ga) LEGEND-200 (200 кг. ⁷⁶Ge) (~185 кг. Nal)

SNO+ (1.3 т. ¹³⁰Te)

Цели и задачи работы

Целью работы является изучение влияния резонансной структуры зарядово-обменной силовой функции *S*(*E*) на сечение взаимодействия с нейтрино, на примере ядер ⁷¹Ga, ⁷⁶Ge, ¹²⁷I, ^{128,130}Te – популярных мишеней в детекторах действующих и планируемых международных нейтринных экспериментов, и оценка возможности использования изотопов теллура в детекторах нейтрино нового поколения, в частности в проекте Баксанского большого нейтринного телескопа.

- 1. Обработать опубликованные экспериментальные данные по реакциям перезарядки для изотопов ⁷¹Ga, ⁷⁶Ge, ¹²⁷I, ^{128,130}Te; разложить спектр возбуждения ядра на отдельные резонансы и квази-свободный фон и определить параметры возбужденных состояний.
- 2. Вычислить сечение захвата нейтрино на ядрах ⁷¹Ga, ⁷⁶Ge, ¹²⁷I, ^{128,130}Te с учетом как дискретной части силовой функции, на основе последних данных измерений ядерных возбуждений в реакциях перезарядки, так и с учетом вклада от резонансной части, полученной из обработки экспериментальных данных.
- 3. Исследовать значимость вкладов различных ядерных резонансов в сечения и скорости захвата нейтрино от Солнца ядрами ⁷¹Ga, ⁷⁶Ge, ¹²⁷I, ^{128,130}Te.
- 4. Проанализировать влияние выбора варианта функции Ферми на сечение и скорости захвата нейтрино.
- 5. Для планируемого жидко-сцинтилляционного детектора в проекте Баксанского большого нейтринного телескопа (ББНТ) оценить число событий от захвата солнечных нейтрино при добавлении изотопов ^{128,130}Те в мишень детектора.
- 6. Разработать и создать концентратор света для оптического модуля прототипа 5 т. Баксанского большого нейтринного телескопа(ББНТ). 7

¹²⁸Те и ¹³⁰Те: схема зарядово-обменных возбуждений ядер

ЭКСПЕРИМЕНТ: Реакция ^{128, 130}Te(³He, t)^{128, 130}I

P. Puppe, A. Lennarz, T. Adachi, H. Akimune, H. Ejiri, D. Frekers, H. Fujita, Y. Fujita, M. Fujiwara, et. al. Phys. Rev. C 86, 044603 (2012).

¹²⁸Те и ¹³⁰Те: обработка экспериментальных данных

$$S_i(E) = M_i^2 \cdot \frac{\Gamma_i (1 - \exp(-(E/\Gamma_i)^2))}{(E - w_i)^2 + \Gamma_i^2}$$

- shape form for all the resonances. 3 free parameters: the centroid energies, the widths, and the amplitudes.

$$\frac{d^2\sigma}{dEd\Omega} = N_0 \frac{1 - \exp[(E_t - E_0)/T]}{1 + [(E_t - E_{QF})/W^2]}$$

- QFC background shape J. Jänecke et al. Phys. Rev. C 48, 2828 (1993) Only N_0 and E_{QF} are used as free parameters.

Зарядово-Обменная Силовая Функция Реакции ¹²⁸Те(³He, t)¹²⁸I

1 — Эксперимент (синяя линия): Р. Puppe, A. Lennarz, T. Adachi, H. Akimune, H. Ejiri, D. Frekers, H. Fujita, Y. Fujita, M. Fujiwara, *et. al.* Phys. Rev. C 86, 044603 (2012).

2 - линия – численный расчет по ТКФС с е_q=0.9. GTR – Гамов-Теллеровский резонанс; PR1, PR2 – пигми резонансы.

Зарядово-Обменная Силовая Функция Реакции ¹³⁰Те(³He, t)¹³⁰I

1 – Эксперимент (синяя линия): Р. Puppe, A. Lennarz, T. Adachi, H. Akimune, H. Ejiri, D. Frekers, H. Fujita, Y. Fujita, M. Fujiwara, *et. al.* Phys. Rev. C 86, 044603 (2012).

2 - линия – численный расчет по ТКФС с е_q=0.9. GTR – Гамов-Теллеровский резонанс; PR1, PR2 – пигми резонансы.

Normalization and Quenching effect ¹²⁸Te ¹³⁰Te

13

¹²⁸Те и ¹³⁰Те: сечение захвата нейтрино

¹²⁸Te

¹³⁰Te

Скорости захвата солнечных нейтрино

¹²⁸Te

¹³⁰Te

	Скорость захвата [SNU]						
Solar component	σ_{disc}	σ_{res}	$\sigma_{disc+res}$				
pp	0	0	0				
рер	0.865	0	0.865				
⁷ Be	0	0	0				
⁸ B	13.736	27.287	41.023				
hep	0.042	0.144	0.186				
$\begin{cases} {}^{13}N \\ {}^{15}O \\ {}^{17}F \end{cases}$	0 0.410 0.010	0	0 0.410 0.010				
R _{total}	15.065	27.43	42.497				

	Скорость захвата [SNU]							
Solar	σ_{disc}	σ_{res}	$\sigma_{disc+res}$	H. Ejiri and S. R.				
component				Elliott Phys. Rev. C				
				89, 055501 (2014)				
pp	0	0	0	0				
pep	5.970	0	5.970	5.9				
⁷ Be	39.828	0	39.828	43.2				
⁸ B	16.156	36.727	52.883	15.9				
hep	0.045	0.158	0.203	-				
$(13_N$	2.439		2.439	2.4				
150	4.700	0	4.700	4.6				
	0.118		0.118	-				
$\left({}^{17}F \right)$								
R _{total}	69.258	36.885	106.144	71.9 (67.7)				

SNU – solar neutrino units, 1 взаимодействие на 10³⁶ ядер мишени

⁷¹Ga(³He,t) ⁷¹Ge: обработка экспериментальных данных

D. Frekers et al. Phys. Rev. C 91, 034608 (2015)

⁷¹Ga: сечение захвата и квенчинг

 $q_{exp}^{max} = 1$ $q_{exp} \approx 0.5$

⁷¹Ga: скорости захвата солнечных нейтрино

Capture rate	D. Frekers et al.	Calculation	Calculation		
[SNU]	Phys. Rev. C 91,	q=1	q=0.5		
	034608 (2015)				
R _{diskr}	115.9	119.5	119.5		
R_{3-S_n}	6.5	14.2	7.0		
R _{total}	122.4	133.7	126.5		

	Total capture rate [SNU]							
Solar	D. Frekers et al. Phys. Rev. C	Calculation	Calculation					
component	91, 034608 (2015)	q=1	q=0.5					
pp	69.9	72.0	72.0					
pep	3.4	3.5	3.5					
⁷ Be	36.7	38.1	38.1					
⁸ B	10.1	17.7	10.6					
$ \left\{\begin{array}{c} ^{13}N\\ ^{15}O\\ ^{17}F\end{array}\right. $	2.2	2.3	2.3					
R _{total}	122.4	133.7	126.5					

⁷⁶Ge: скорости захвата солнечных нейтрино

Скорость захвата [SNU]	pep	hep	¹³ N	$^{17}\mathrm{F}$	¹⁵ O	⁸ B	Полная скорость захвата
R_{discr}	1.369	0.045	0.102	0.021	0.828	13.542	15.9
$R_{res},q_{exp}=1$	0.0	0.051	0.0	0.0	0.0	7.563	7.614
$R_{GTR},q_{exp}=1$	0.0	0.025	0.0	0.0	0.0	3.752	3.778
$R_{res},q_{exp}=0.55$	0.0	0.026	0.0	0.0	0.0	4.023	4.054
$R_{GTR},q_{exp}=0.55$	0.0	0.014	0.0	0.0	0.0	1.998	2.011
$R_{total},q_{exp}=1$	1.369	0.072	0.102	0.021	0.828	21.11	23.52
$R_{total},q_{exp}=0.55$	1.369	0.090	0.102	0.021	0.828	17.669	19.96

Ферми-функция

$$\sigma_{discr}(E_{\nu}) = \frac{1}{\pi} \sum_{k} G^2 p_e E_e \underline{F(Z, E_e)} [B(F)_k + (\frac{g_A}{g_V})^2 B(GT)_k]$$
$$\sigma_{res}(E_{\nu}) = \frac{g_A^2}{\pi} \int_{\varepsilon_{min}}^{\varepsilon_{max}} G^2 p_e E_e \underline{F(Z, E_e)} S(E) dE$$

Ферми-функция – поправочный множитель, учитывающий кулоновское взаимодействие $F(Z, E_e) = \frac{|\psi_e(0)|_Z^2}{|\psi_e(0)|_{Z=0}^2}$

Ферми-функция: расчеты

E. Fermi, "An attempt of a theory of beta radiation. 1.", Z. Phys.88, 161–177(1934). (point-like nuclei)

$$F_0(Z, A, W) = 4(2pR)^{2(\gamma-1)} \frac{|\Gamma(\gamma + iy)|^2}{(\Gamma(1+2\gamma))^2} e^{\pi y}, \gamma = \sqrt{1 - (\alpha Z)^2}, y = \pm \alpha Z W/p$$
(11)

Point-like nuclei + finite size correction

$$F(Z, A, W) = F_0 \cdot L_0.$$

$$L_0 = 1 + \frac{13}{60} (\alpha Z)^2 \mp \frac{\alpha Z W R (41 - 26\gamma)}{[15(2\gamma - 1)]} \mp \frac{\alpha Z R \gamma (17 - 2\gamma)}{[30W(2\gamma - 1)]} + \Omega$$

H. Behrens and J. Janecke, Numerical Tables for Beta-Decay and Electron Capture, Landolt-Boernstein - Group I Elementary Particles, Nuclei and Atoms (Springer, 1969).

B. S. Dzhelepov and L. N. Zyrianova, Influence of atomic electric fields on beta decay(Moscow: Akad. Nauk SSSR, 1956).

Y. P. Suslov, Izv. Akad. Nauk SSSR, Ser. Fiz.32, 213 (1968).

Ферми-функция: расчеты

1 - E. Fermi, "An attempt of a theory of beta radiation. 1.", Z. Phys.88, 161–177(1934).

2 - L. Hayen, N. Severijns, K. Bodek, D. Rozpedzik, and X. Mougeot, "High precision analytical description of the allowed β spectrum shape", Rev. Mod.Phys.90, 015008 (2018) (Fermi 2017)

3 - H. Behrens and J. Janecke, Numerical Tables for Beta-Decay and Electron Capture, Landolt-Boernstein - Group I Elementary Particles, Nuclei and Atoms (Springer, 1969).

4 - B. S. Dzhelepov and L. N. Zyrianova, Influence of atomic electric fields on beta decay(Moscow: Akad. Nauk SSSR, 1956).

5 - Y. P. Suslov, Izv. Akad. Nauk SSSR, Ser. Fiz.32, 213 (1968).

¹²⁷I: силовая функция

New prospects for iodine detector and Solar neutrinos registration / Y. S. Lutostansky, ..., A. N. Fazliakhmetov [и др.] // Physics Letters B. — 2022. — T. 826. — C. 136905.

Figure 2: (1) - Experimental charge-exchange strength function S(E) measured in ¹²⁷I(p, n)¹²⁷Xe reaction [10]; (2) - theoretical strength function; (3) - GTresonances from FFST calculations; (4,5) - GT-resonances from fit of experimental data and their summary.

Влияние Ферми-функции на расчеты скоростей захвата нейтрино

1 - **E. Fermi**, "An attempt of a theory of beta radiation. 1.", *Z. Phys.*88, 161–177(1934).

2 - L. Hayen, N. Severijns, K. Bodek, D. Rozpedzik, and X.
Mougeot, "High precision analytical description of the allowed β spectrum shape", Rev. Mod.Phys.90, 015008 (2018) (Fermi 2017)
3 - H. Behrens and J. Janecke, Numerical Tables for Beta-Decay and Electron Capture, Landolt-Boernstein - Group I Elementary Particles, Nuclei and Atoms (Springer, 1969).

4 - B. S. Dzhelepov and L. N. Zyrianova, Influence of atomic electric fields on beta decay(Moscow: Akad. Nauk SSSR, 1956).
5 - Y. P. Suslov, Izv. Akad. Nauk SSSR, Ser. Fiz.32, 213 (1968).

Ферми-функция	⁸ B	hep	^{13}N	$^{15}\mathrm{O}$	$^{17}\mathrm{F}$	pep	⁷ Be	Total
1	27.286	0.120	0.161	0.543	0.013	0.818	2.850	31.795
2	25.735	0.108	0.163	0.549	0.013	0.826	2.890	30.287
3	25.706	0.108	0.164	0.551	0.013	0.828	2.923	30.29
4	22.853	0.093	0.152	0.510	0.012	0.767	2.695	27.085
5	21.881	0.089	0.145	0.490	0.012	0.738	2.562	25.920

Баксанский Большой Нейтринный Телескоп

Баксанский большой нейтринный телескоп — это жидкостносцинтилляционный нейтринный детектор с массой мишени 10 кт, который предлагается построить на Северном Кавказе в подземых залах Баксанской нейтринной обсерватории ИЯИ РАН на глубине около 4700 м.в.э. Основные задачи проекта:

- Измерение потоков геонейтрино
- Регистрация СNO нейтрино, металличность Солнца
- Детектирование нейтрино от Сверхновых
- Поиск процесса 0υββ при добавлении соотв. изотопов в сцинтиллятор (¹³⁰Te, других)

Как было ранее упомянуто, по аналогии с экспериментом SNO+, детектор ББНТ массой 100 т предлагается использовать для поиска процесса $0\nu\beta\beta$ в ¹³⁰Te, путем добавления в него природной смеси теллура. Ожидаемое число $0\nu\beta\beta$ событий $R_{\beta\beta}$ можно оценить исходя из периода полураспада по формуле [17]:

$$R_{\beta\beta} = \frac{1}{M} \frac{dN}{dt} = \frac{\lambda N}{M} \approx \frac{420}{W(g)} \left(\frac{10^{27} \text{л.}}{T_{1/2}^{0\nu}}\right) \frac{\text{co6.}}{\text{т} \cdot \text{год}}$$
(5.1)

где W(g) молярная масса $\beta\beta$ изотопа, а M его масса в тоннах. Для 100-тонного сцинтилляционного детектора ББНТ при концентрации природной смеси изотопов теллура в сцинтилляторе 1% и $T_{1/2}^{0\nu}(^{130}\text{Te}) = 10^{27}$ она даст ≈ 1 событие в год.

Можно оценить ожидаемое число событий от захвата солнечных нейтрино в год этого же детектора. Учитывая, что в одной тонне теллура число атомов изотопа ¹³⁰Te (изотопное содержание $\approx 34\%$) составляет $N(^{130}\text{Te}) \approx$ 1.58×10^{27} шт. и в предыдущей главе была получена оценка скорости захвата солнечных нейтрино $R_{Total} = 89.358$ SNU, где SNU количество взаимодействий на 10^{36} ядер мишени, то ожидаемое число событий в год от изотопа ¹³⁰Te составит ≈ 4.4 событий в год. Аналогично для ¹²⁸Te ≈ 1.8 событий в год.

Необходимо отметить, что данная оценка получена без учета осцилляций нейтрино; в качестве грубой оценки можно принять, что их доучет снизит ожидаемое число событий примерно в 2 раза. Также нужно учесть что только часть событий от солнечных нейтрино попадет в область интереса эксперимента. Расчёты β-спектра показывает, что около 9.8% распадов ¹³⁰I будут попадать в область интереса (ROI) при разрешении 2% по полной ширине на полувысоте (FWHM) [17]. На Рис. 5.3 показан энергетический спектр β- и γ-частиц от распада ¹³⁰I. Для простоты предположим что это верно и для ¹²⁸I. Тогда оценка ожидаемого числа событий от захвата солнечных нейтрино ядрами ^{128,130}Te в области интереса для 100-тонного сцинтилляционного детектора ББНТ составит ≈ 0.3 события в гол.

Баксанский Большой Нейтринный Телескоп: прототип 5 т.

Построение профиля концентратора для сферического фотокатода.

Изготовленный концентратор

Чертеж концентратора вместе с креплением к ФЭУ

Стенд для проверки долговременной стабильности

Результаты

1. Для изотопов ⁷¹Ga, ⁷⁶Ge, ¹²⁷I, ^{128,130}Te были обработаны опубликованные экспериментальные данные по реакциям перезарядки (*p*, *n*) и (³He, t). Был сделан анализ этих спектров, выполнено разложение экспериментального спектра возбуждения на отдельные ядерные резонансы (пигми, гигантский Гамов-Теллеровский, аналоговые) и на подложку фона от переходов в квазисвободные состояния. Для каждого резонанса, в зависимости от его формы, были получены его параметры: положения пика и ширина. Исходя из параметров резонансов, полученных при разложении спектров реакций перезарядки, для каждого изотопа: ⁷¹Ga, ⁷⁶Ge, ¹²⁷I, ^{128,130}Te была построена экспериментальная силовая функция *S(E)*, характеризующая интенсивность переходов в конечном ядре в зависимости от энергии возбуждения.

2. Впервые для ядер ⁷¹Ga, ⁷⁶Ge, ¹²⁷I, ^{128,130}Te были рассчитаны сечения захвата нейтрино с учетом не только низколежащих дискретных частей, но и с учетом резонансного вклада экспериментальной зарядовообменной силовой функции *S(E)*. Для всех ядер было показано, что с ростом энергии налетающих нейтрино, в сечении захвата нейтрино начинает доминировать вклад от резонансной части экспериментальной силовой *S(E)*.

3. Впервые для ядер ⁷¹Ga, ⁷⁶Ge, ¹²⁷I, ^{128,130}Te были рассчитаны скорости захвата нейтрино R с учетом резонансной структуры зарядово-обменной силовой функции *S(E)*. Результаты расчетов с учетом только вклада дискретных частей в силовую функцию хорошо согласовались с результатами других научных групп. Показано, что для некоторых изотопов, например ⁷¹Ga, доучет резонансной структуры в силовой функции не оказывает существенного влияния на итоговую скорость захвата.

С другой стороны, для ⁷⁶Ge, ¹²⁷I, ^{128,130}Te учет резонансной структуры значительно (до 2х раз для ¹²⁸Te) повышает итоговую скорость захвата R. Такое поведение в первую очередь связано с порогом реакции захвата нейтрино, в зависимости от которого в R будут доминировать вклады либо от низкоэнергетичных pp-нейтрино (для ⁷¹Ga), либо от высокоэнергетичных нейтрино от канала ⁸B (¹²⁷I, ^{128,130}Te).

4. Исследовано влияние выбора варианта Ферми-функции на сечение и скорости захвата солнечных нейтрино ядром ¹²⁷I. Показано, что разные варианты расчета Ферми-функции дают разницу в скоростях захвата нейтрино R до ≈ 15%. Наиболее чувствительно точное определение Ферми-функции для изучения спектра борных нейтрино.

5. Используя полученные ранее оценки на скорости захвата солнечных нейтрино изотопами ¹²⁸Te и ¹³⁰Te сделана оценка числа событий от захвата нейтрино от Солнца этими же изотопами для 100-тонного сцинтилляционного детектора ББНТ при концентрации природной смеси изотопов теллура в сцинтилляторе 1%: ≈ 0.3 события в год около значения Q_{ββ} = 2527.51 кэВ. Оценка на число событий 0vββ распада ¹³⁰Te при ожидаемой T^{0v}_{1/2}= 10²⁷ дает значение ≈ 1 события в год. Хотя и для детектора такой массы данным фоновым процессом можно пренебречь, для нового поколения детекторов массой больше 1 кт относительный вклад фона от процесса захвата солнечных нейтрино будет расти. Для экспериментов следующего поколения требуется тщательная оценка этого фона.

6. Для прототипа 5 т ББНТ разработан и создан концентратор света. Форма профиля концентратора была рассчитана с использованием метода струны («string method»). Был создан алгоритм, оптимизирующий светосбор концентратора, в зависимости от профиля фотокатода ФЭУ, расстояния до светоизлучающей сферы, ее диаметра и пр. Программная реализация данного алгоритма была сделана на языке python с привлечением библиотеки numpy. Производство концентратора света по оптимизированной форме было внедрено на предприятии ООО «Гидромания».

Публикации

(A1) Interaction of Solar Neutrinos with 128Te and 128,130 Te / Yu. S. Lutostansky, A. N. Fazliakhmetov, B. K. Lubsandorzhiev, N. A. Belogortseva, G. A. Koroteev, A. Yu. Lutostansky, V. N. Tikhonov // Bull. Russ. Acad. Sci. Phys. – 2024. – T. 88, No 8. – C. 1223–1229.

(А2) Влияние функции Ферми на сечение захвата нейтрино / А. Н. Фазлиахметов, Ю. С. Лютостанский, Г. А. Коротеев, А. П. Осипенко, В. Н. Тихонов // Физика элементарных частиц и атомного ядра. – 2023. –Т. 54, No3. – С. 668—675.

(A3) Structure of the Charge-Exchange Strength Function of Tellurium Isotopes 128 and 130 / A. N. Fazliakhmetov, Yu. S. Lutostansky, B. K. Lubsandorzhiev, G. A. Koroteev, A. Yu. Lutostansky, V. N. Tikhonov // Phys. Atom. Nucl. – 2023. – T. 86, No 5. – C. 736—741.

(A4) A.D. Lukanov, D.M. Voronin, A.N. Fazliakhmetov, E. P. Veretenkin, A. M. Gangapshev, V. N. Gavrin, T. V.
Ibragimova, V. V. Kazalov, V. V. Kuzminov, B. K. Lubsandorzhiev, Y. M. Malyshkin, D. A. Nanzanov, G. Y. Novikova, V.
B. Petkov, A. Y. Sidorenkov, O. Y. Smirnov, N. A. Ushakov, A. A. Shikhin, E. A Yanovich/ Current status of the Baksan Large Neutrino Telescope // Bull. Russ. Acad. Sci. Phys. 87 (2023) 929-934.

(A5) New prospects for iodine detector and Solar neutrinos registration / Yu. S. Lutostansky, A. N. Fazliakhmetov, G. A. Koroteev, N. V. Klochkova, A. Y. Lutostansky, A. P. Osipenko, V. N. Tikhonov // Physics Letters B. – 2022. – T. 826. – C. 136905.

Публикации

(A6) Light concentrators for large-volume detector at the Baksan Neutrino Observatory / A. N. Fazliakhmetov, V. N. Gavrin, T. V. Ibragimova, B. K. Lubsandorzhiev, A. D. Lukanov, Yu. M. Malyshkin, A. Y. Sidorenkov, A. A. Shikhin, O. Y. Smirnov, N. A. Ushakov, E. P. Veretenkin, D. M. Voronin // PoS. – 2021. – T. ICRC2021. – C. 1097.

(А7) Влияние высоколежащих резонансов на сечения захвата солнечных нейтрино ядром 127I / Ю. С. Лютостанский, Г. А. Коротеев, Н. В. Клочкова, А. П. Осипенко, В. Н. Тихонов, А. Н. Фазлиахметов // Ядерная физика. – 2020. – Т. 83, No 3. – С. 208—216.

(A8) Взаимодействие нейтрино с системой Ga—Ge и ядерные резонансы/ Г. А. Коротеев, Н. В. Клочкова, Ю. С. Лютостанский, А. П. Осипенко, В. Н. Тихонов, А. Н. Фазлиахметов // Известия Российской академии наук. Серия физическая. — 2020. — Т. 84, No 8. — С. 1090—1093.

(А9) Сечение захвата солнечных нейтрино ядром 76 Ge / А. К. Выборов, Л. В. Инжечик, Ю. С. Лютостанский, Г. А. Коротеев, В. Н. Тихонов, А. Н. Фазлиахметов, // Известия Российской академии наук. Серия физическая. – 2019. – Т. 83, No 4. – С. 534—538.

(A10) Solar neutrino capture by 128, 130Te isotopes and Baksan Large Neutrino Telescope Project / A. N. Fazliakhmetov, Yu. S. Lutostansky, B. K. Lubsandorzhiev, G. A. Koroteev, V. N. Tikhonov // https://arxiv.org/abs/2407.10357

Апробация работы

1. 69-я Международная конференция «Ядро-2019» по ядерной спектроскопии и структуре атомного ядра, 1 — 5 Июля 2019, Дубна, Россия.

2. LXX Международная конференция «Ядро-2020. Ядерная физика и физика элементарных частиц. Ядерно-физические технологии, 11 – 17 Октября 2020, Онлайн.

3. Conference on Neutrino and Nuclear Physics 2020 (CNNP2020), Cape Town (South Africa) 24-28 February 2020.

4. LXXI Международная конференция «Ядро—2021. Ядерная физика и физика элементарных частиц. Ядерно-физические технологии», 20—25 Сентября 2021, Онлайн.

5. Международная научная конференция студентов, аспирантов и молодых

учёных «Ломоносов-2021», 12 — 23 Апреля 2021, Москва, Россия.

6. 37th International Cosmic Ray Conference ICRC2021, 12 – 24 July 2021

7. International Conference on Particle Physics and Astrophysics (ICPPA-2022), Moscow, Russia, 29th of November - 2nd of December 2022.

8. 73-я международная конференция по ядерной физике «ЯДРО-2023: Фундаментальные вопросы и приложения», 9 – 13 Октября 2023, Саров, Россия.

9. 74-я международная конференция «Ядро-2024: Фундаментальные проблемы и приложения», 1—5 Июля 2024, Дубна, Россия.

Спасибо за внимание!

Measurement of Electron-Neutrino Charged-Current Cross Sections on ¹²⁷I with the COHERENT NaIvE Detector

P. An,^{1,2,*} C. Awe,^{1,2} P. S. Barbeau,^{1,2} B. Becker,³ V. Belov,^{4,5} I. Bernardi,³ C. Bock,⁶ A. Bolozdynya,⁴ R. Bouabid,^{1,2} A. Brown,^{7,2} J. Browning,⁸ B. Cabrera-Palmer,⁹ M. Cervantes,¹ E. Conley,¹ J. Daughhetee,¹⁰ J. Detwiler,¹¹ K. Ding,⁶ M. R. Durand,¹¹ Y. Efremenko,^{3,10} S. R. Elliott,¹² L. Fabris,¹⁰ M. Febbraro,¹⁰ A. Gallo Rosso,¹³ A. Galindo-Uribarri,^{10,3} A. C. Germer,¹⁴ M. P. Green,^{2,10,8} J. Hakenmüller,¹ M. R. Heath,¹⁰ S. Hedges^{(1,2,†,‡} M. Hughes,¹⁵ B. A. Johnson,¹⁵ T. Johnson,^{1,2} A. Khromov,⁴ A. Konovalov,^{4,§} E. Kozlova,⁴ A. Kumpan,⁴ O. Kyzylova,¹⁶ L. Li,^{1,2} J. M. Link,¹⁶ J. Liu,⁶ M. Mahoney,¹⁴ A. Major,¹ K. Mann,⁸ D. M. Markoff,^{7,2} J. Mastroberti,¹⁵ J. Mattingly,¹⁷ P. E. Mueller,¹⁰ J. Newby,¹⁰ D. S. Parno,¹⁴ S. I. Penttila,¹⁰ D. Pershey,¹ C. G. Prior,^{1,2} R. Rapp,¹⁸ H. Ray,¹⁹ J. Raybern,¹ O. Razuvaeva,^{4,5} D. Reyna,⁹ G. C. Rich,² J. Ross,^{7,2} D. Rudik,^{4,||} J. Runge,^{1,2} D. J. Salvat,¹⁵ J. Sander,⁶ K. Scholberg,¹ A. Shakirov,⁴ G. Simakov,^{4,5} G. Sinev,^{1,1} C. Skuse,¹⁴ W. M. Snow,¹⁵ V. Sosnovtsev,⁴ T. Subedi,^{16,20} B. Suh,¹⁵ R. Tayloe,¹⁵ K. Tellez-Giron-Flores,¹⁶ Y.-T. Tsai,²¹ E. Ujah,^{7,2} J. Vanderwerp,¹⁵ E. E. van Nieuwenhuizen,^{1,2} R. L. Varner,¹⁰ C. J. Virtue,¹³ G. Visser,¹⁵ K. Walkup,¹⁶ E. M. Ward,³ T. Wongjirad,²² J. Yoo,²³ C.-H. Yu,¹⁰ A. Zawada,² J. Zettlemoyer,^{15,**} and A. Zderic¹¹ ¹Department of Physics, Duke University, Durham, North Carolina 27708, USA ²Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA ³Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ⁴National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russian Federation ⁵National Research Center "Kurchatov Institute," Moscow, 123182, Russian Federation ⁶Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA ⁷Department of Mathematics and Physics, North Carolina Central University, Durham, North Carolina 27707, USA ⁸Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA ⁹Sandia National Laboratories, Livermore, California 94550, USA ¹⁰Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ¹¹Center for Experimental Nuclear Physics and Astrophysics and Department of Physics, University of Washington, Seattle, Washington 98195, USA ¹²Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Measurement of Electron-Neutrino Charged-Current Cross Sections on 127I with the COHERENT NalvE Detector // P. An et al. Phys. Rev. Lett. 131, 221801 – Published 29 November 2023

ЯДРО 2024

Ускоритель Spallation Neutron Source и эксперимент COHERENT

Спектр ускорительных нейтрино от источника SNS

Зарядово-обменная силовая функция реакции $^{127}I(p,n)^{127}Xe$

Результаты эксперимента

ЯДРО 2024

FIG. 4. The visible energy spectrum of CC events between 10 and 55 MeV is shown in black, along with the best-fit spectrum from MARLEY (orange) allowing the $\geq 1n$ and 0n amplitudes to float.

Conclusion.—COHERENT has measured the inclusive $\nu_e \text{CC}^{-127}\text{I}$ cross section on ^{127}I between 10 and 55 MeV to be $(9.2^{+2.1}_{-1.8}) \times 10^{-40} \text{ cm}^2$. This measurement is roughly 41% of the nominal cross section from MARLEY and to date is the heaviest CC neutrino-nucleus cross section measured in this energy regime.

FIG. 5. Measurement (1σ) of the $\nu_e \text{CC}^{-127}\text{I}$ cross section separated into 0n and $\geq 1n$ channels compared to the MARLEY prediction and Ref. [12], measuring the 0n cross section.

From the 2D fit, we derive measurements of the cross sections to the exclusive 0n and $\geq 1n$ channels simultaneously. Our measurement is shown in Fig. 5. At 1σ , the NaI ν E data imply $\sigma(0n) = (5.2^{+3.4}_{-3.1}) \times 10^{-40}$ cm² after profiling $\sigma(\geq 1n)$, consistent with Ref. [12] and MARLEY's prediction [18], though uncertainties are large due to the $\geq 1n$ events present in NaI ν E. The determined 1σ range for $\sigma(\geq 1n)$ is $2.2^{+3.5}_{-2.2} \times 10^{-40}$ cm² is roughly $10\times$ lower than the MARLEY model, suggesting the suppression in the total rate relative to MARLEY is due to the modeling of the $\geq 1n$ channel. Profiles for the exclusive cross-section fits can be found in Supplemental Material [18], which includes Refs. [29–37].

Система уравнений для эффективного поля (λ – представление)

Для расчетов зарядово-обменных возбуждений ядер использовалась теория конечных ферми-систем А.Б. Мигдала, в которой параметры изобарических состояний находятся из решения системы уравнений для эффективного поля гамов-теллеровского типа:

$$V_{\lambda\lambda'} = V_{\lambda\lambda'}^{\omega} + \sum_{\lambda_{1}\lambda_{2}} \Gamma_{\lambda\lambda'\lambda_{1}\lambda_{2}}^{\omega} A_{\lambda_{1}\lambda_{2}} V_{\lambda_{2}\lambda_{1}} + \sum_{\nu_{1}\nu_{2}} \Gamma_{\lambda\lambda'\nu_{1}\nu_{2}}^{\omega} A_{\nu_{1}\nu_{2}} V_{\nu_{2}\nu_{1}};$$

$$V_{\nu\nu'} = \sum_{\lambda_{1}\lambda_{2}} \Gamma_{\nu\nu'\lambda_{1}\lambda_{2}}^{\omega} A_{\lambda_{1}\lambda_{2}} V_{\lambda_{2}\lambda_{1}} + \sum_{\nu_{1}\nu_{2}} \Gamma_{\nu\nu'\nu_{1}\nu_{2}}^{\omega} A_{\nu_{1}\nu_{2}} V_{\nu_{2}\nu_{1}};$$

$$V^{\omega} = e_{q} \sigma \tau^{+}; \quad A_{\lambda\lambda'}^{(p\bar{n})} = \frac{n_{\lambda}^{n} (1 - n_{\lambda'}^{p})}{e_{\lambda}^{n} - e_{\lambda'}^{p} + \omega}; \quad A_{\lambda\lambda'}^{(n\bar{p})} = \frac{n_{\lambda}^{p} (1 - n_{\lambda'}^{n})}{e_{\lambda}^{p} - e_{\lambda'}^{n} - \omega}.$$

Использовалось локальное взаимодействие *F*[∞] (Ландау-Мигдал):

Г-Т ПРАВИЛА
ОТБОРА:
$$\Delta j = 0; \pm 1$$

 $\Delta j = \pm 1$: $j = l \pm 1/2 \rightarrow j = l \pm 1/2$
 $\Delta j = 0$: $j = l \pm 1/2 \rightarrow j = l \pm 1/2$
 $\Delta j = -1$: $j = l - 1/2 \rightarrow j = l \pm 1/2$
 $j = l - 1/2 \rightarrow j = l - 1/2$

S = 1, $\Delta L = \pm 1$, $\Delta P = 0$

$$F^{\omega} = \mathcal{C}_0 \left(f_0' + g_0' \sigma_1 \sigma_2 \right) \tau_1 \tau_2 \,\delta(r_1 - r_2)$$

где константы: f_0' спин-спинового и g_0' спин-изоспинового взаимодействия квазичастиц, являются феноменологическими параметрами. $\underline{f_0'=1.35, g_0'=1.22.}$ Матричный элемент M_{GT} : $M_{GT}^2 = \sum_{\lambda_1 \lambda_2} \chi_{\lambda_1 \lambda_2} A_{\lambda_1 \lambda_2} V_{\lambda_1 \lambda_2}^{\sigma}$ Для парциальных силовых функций получаем: $S_\beta^i(E) = M_i^2 \cdot \frac{\Gamma_i (1 - \exp(-(E/\Gamma_i)^2))}{(E - w_i)^2 + \Gamma_i^2}$

Ширина Γ_i согласно Мигдалу определяется соотношением: $\Gamma = \alpha \ge \varepsilon |\varepsilon| + \beta \varepsilon^3 + \gamma \varepsilon^2 |\varepsilon| + O(\varepsilon^4) \dots$

$$\Gamma_{i}(\omega_{i}) = 0,018 \omega_{i}^{2} M$$
эВ