Измерение масс трансурановых элементов в области N = 152 на установке TRIGA TRAP

Ченмарев С. В. – ОФВЭ ЛФЭЯ

01.04.2025

Введение

- Одной из важнейших величин в фундаментальной физике является масса нуклида, соответствующая его полной энергии связи.
- Ионные ловушки зарекомендовали себя как универсальный прибор для фундаментальных исследований. Они были успешно использованы для измерений масс электронов, протонов и антипротонов, привнеся информацию о выполнимости СРТ-принципа.
- Установленные на пучках ускорителей и реакторов, ловушки активно используются для масс-спектрометрических измерений экзотических ядер.

Реактор ТРИГА-Майнц

 Training, Research, Isotopes, General

 Atomics – серия исследовательских

 реакторов, использующих топливо

 на основе UZr H_x, содержащего

 8,5-12% U из которого 20% ²³⁵ U

 Расположен в университете

 им. Иогана Гутенберга в Майнце

Характеристики реактора ТРИГА в сравнении с реакторами ПИК и ВВР-М в Гатчине

	TRIGA Mainz		ПиК	BBP-M
Режим	непрерывный	импульсный	непрерывный	непрерывный
Тепловая мощность	100 кВт	250 МВт в течение 30 мс	100 МВт	18 МВт
Плотность потока нейтронов, н/см²с	7x10 ¹¹	1,75x10 ¹⁵	5x10 ¹⁵	4x10 ¹⁴
Топливо	U ZrH _x		UO ₂ +CuBe	U AI керамика
Степень обогащения топлива по ²³⁵ U	8,5-12% x 20%		90%	90%
Замедлитель	ZrH _x + вода		Вода	Вода
Отражатель	Графит		Тяжелая вода	Металлический Ве
Число ГЭК	4		10	17
Число ВЭК	1 + барабан и 2 петли пневмопочты в отражателе		6 + 6 наклонных	15
Ввод в эксплуатацию	1965		2018	1960

Система TRIGA Spec

Принцип работы ловушки Пеннинга

Манипуляция ионами в ловушке

Методы определения циклотронной частоты

• Метод времяпролётного

ионного циклотронного резонанса (ToF-ICR)

Методы определения циклотронной частоты

• Метод Фурье-преобразования (FT-ICR) ₋₁₁₀

Noise (a.u.) (dB)mplitude Amplitude -120 518100 518120 -130 -140 518000 518100 518200 Frequency (Hz)

Ion signal

Для высокой чувствительности требуется использовать резонатор на основе сверхпроводника и охлаждения усилителя и ловушек до криогенных температур 10

Метод фазового отображения

S. Eliseev et al., Appl. Phys. B 114(1), 107–128 (2014).

Метод фазового отображения (PI-ICR)

S. Eliseev et al., Appl. Phys. B **114**(1), 107–128 (2014).

<u>Преимущества относительно ToF-ICR</u>

- Быстрее в 25 раз
- Разрешающая способность в 40 раз выше
- Выше чувствительность
- Мощный метод для настройки гармоничности эл. поля
- Удобный инструмент для выставления соосности электрического и магнитного полей
- Позволяет оценить степень загрязнения

<u>Для полной реализации преимуществ требуется</u> контролировать

- Масс-зависимую поправку
- Неоднородность магнитного поля
- Негармоничность электрического поля
- Число ионов в ловушке

. . .

- Перекрытие и положение пятен изображения на детекторе
- Искажения проекции на детекторе
- Влияние давления и температуры в лаборатории 12

Установка TRIGA-TRAP

Ловушка системы TRIGA TRAP

Из-за очень высоких требований к стабильности потенциалов электродов и сложности откачки замкнутой геометрии принято решение

SECTION B-P

В качестве прототипа выбрана хорошо себя зарекомендовавшая геометрия ловушек систем SHIP-Trap и JYFL-Trap

перейти от гиперболической измерительной ловушки к цилиндрической

Solid Edge

FETION A.

Модель ловушки в сборе с усилителем и новым резонатором для измерения межэлектродной емкости и уточнения добротности резонатора

с реальной нагрузкой

Определение сдвига частоты с помощью теоремы инвариантности $\overline{f}_{c}[\theta,\varphi,\epsilon] \equiv \overline{f}_{+}[\theta,\varphi,\epsilon] + \overline{f}_{-}[\theta,\varphi,\epsilon] \equiv f_{c} + \delta f[\theta,\varphi,\epsilon]$ но $f_{c}^{2} = \overline{f}_{+}^{2}[\theta,\varphi,\epsilon] + \overline{f}_{-}^{2}[\theta,\varphi,\epsilon] + \overline{f}_{z}^{2}[\theta,\varphi,\epsilon]$

G. Gabrielse, Int. J. Mass Spectrom. 279(2), 107–112 (2009).

Время-фазовый метод определения аксиальной частоты

16

Систематическая погрешность

Фактор	Δf _c	$\Delta f_c/f_c$
Радиальная неоднородность магнитного поля	< 0,5 mHz	< 1·10 ⁻⁹
Радиальная негармоничность электрического поля	< 0,5 mHz	< 1.10-9
Осевая неоднородность магнитного поля	< 0,1 mHz	< 2.10-10
Влияние числа ионов в ловушке	< 0,1 mHz	< 2.10-10
Искажения изображения на детекторе	< 0,25 mHz	< 5.10-10
Температура камеры ловушек	< 1 mHz	< 2·10 ⁻⁹
Давление над жидким гелием в магните	< 0,3 mHz	< 6.10-10
Масс-зависимая поправка	< 1 mHz	< 10 ^{-11 1} / _u
Полная ошибка:		~2.5·10 ⁻⁹

S. Chenmarev et al., Eur. Phys. J. A 59, 29 (2023)

Измерение масс стабильных изотопов свинца

18

Измеряемые нуклиды

Процедура измерения

Одновременная аппроксимация нескольких R

Результаты измерений

Выводы

- Была проведена модернизация системы ловушек
 TRIGA Trap и внедрен метод фазового изображения
- С новой ловушкой были оценены и подтверждены систематические погрешности
- Были проведены измерения масс некоторых трансурановых нуклидов, например ²⁴¹ *Ат*и ²⁴³ *Ат*, ²⁴⁴ *Pu*, ²⁴⁸ *Ст*и ²⁴⁹ *Cf*.
- Полученные значения в основном согласуются с данными АМЕ и уточняют ландшафт масс в районе N = 152.

Спасибо за внимание

TRIGA TRAP advanced trapping

Radius effects

Magnetic field

R < 1 mm, ΔR < 0,2 mm → Δf_c < 0,5 mHz → $\Delta f_c/f_c$ < 1.10⁻⁹

Radius effects

Z-class analysis for medium countrate set

Time

Countrate dependent frequency shift

 $N < 5 \text{ ions/shot} \rightarrow \Delta f_c < 2 \text{ mHz} \rightarrow \Delta f_c / f_c < 4.10^{-9}_{29}$

Detector image distortions

Environmental effects

 $\Delta P < 0.1 \text{ mBar} \rightarrow \Delta f_c < 0.3 \text{ mHz} \rightarrow \Delta f_c/f_c < 6.10^{-10}$

 $\Delta T < 0.01 \text{ K} \rightarrow \Delta f_c < 1 \text{ mHz} \rightarrow \Delta f_c / f_c < 2.10^{-9}$

Ионные источники

Новая цилиндрическая ловушка

r	12 mm
Lr	3.530mm
Lc1	9.450
d	0.336mm
TR	0.88103729
C4	8.9197e-09
C6	8.6896e-06
D2	-4.4297e-05

Изготовлено в МРІК

Время-фазовый метод определения аксиальной частоты

Triga-Trap setup

