	Motivation	s SANC Project	Higher order logs	Outlook
00 000000000000 000 0000000 000 0000 0000	● 00	0000	0000000000	000

Physics at a future e+e- Z-boson factory

Andrej Arbuzov

JINR, Dubna

Joint seminar of PNPI High Energy Physics and Theoretical Physics Divisions

PNPI, Gatchina, November 28, 2024

28th Nov. 2024

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	00000000000000	000	0000000000	0000	000

Outline

3 QED

- 4 Higher order logs
- **5** SANC Project

Motivation 000	e ⁺ e ⁻ colliders	QED	Higher order logs	SANC Project	Outlook
	00000000000000	000	0000000000	0000	000

General motivation

- The Standard Model is the most successful physical model ever
- But there are still many open questions to it
- We believe that it is only an effective theory, but its applicability domain might be limited just by the Planck mass scale
- The primary goal of HEP is to study the physics of our actual microworld
- Discovering physics beyond SM is our hope
- In any case, the research in HEP will not stop by the end of LHC
- \bullet Logically, the next step should be a e^+e^- collider

Future e^+e^- collider projects

Linear Colliders • ILC, CLIC

E_{tot}

- \bullet ILC: 91; 250 GeV 1 TeV
- \bullet CLIC: 500 GeV 3 TeV

 $\mathcal{L}\approx 2\cdot 10^{34}~\mathrm{cm}^{-2}\mathrm{s}^{-1}$

Stat. uncertainty $\sim 10^{-4}$

Beam polarization: e^{-} beam: P = 80 - 90% e^{+} beam: P = 30 - 60%

Circular Colliders

- FCC-ee, CEPC
- Z-factory
- Super Charm-Tau Factory
- $\mu^+\mu^-$ collider (μ TRISTAN)

 E_{tot}

• 91; 160; 240; 350 GeV

 $\mathcal{L}\approx 2\cdot 10^{36}~\mathrm{cm}^{-2}\mathrm{s}^{-1}~(4~\mathrm{exp.})$

Stat. uncertainty $\sim 10^{-6}$

Tera-Z mode! Beam polarization: desirable

Physics possibilities at the Z peak

- Indeep verification of the EW sector of SM
- Unique possibilities for QCD at the EW scale
- Photon-photon physics
- Properties of tau lepton
- Physics of (exotic) mesons
- Searches for new physics of SMEFT and other types

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	000000000000000000000000000000000000000	000	0000000000	0000	000

Where are we now

Motivation 000	e^+e^- colliders 000000000000000000000000000000000000	QED 000	Higher order logs 0000000000	SANC Project 0000	Outlook 000

Weak mixing angle

An experimental precision better than 5×10^{-6} is therefore a robust target for the measurement of $\sin^2 \theta_W^{\rm eff}$ at FCC-ee, corresponding to more than a thirty-fold improvement with respect to the current precision of 1.6×10^{-4} .

Individual measurements of leptonic and heavy quark couplings are achievable, with a factor of several hundred improvement on statistical errors and, with the help of detectors providing better particle identification and vertexing, by up to two orders of magnitude on systematic uncertainties.

[FCC Coll. EPJC'2019]

Motivation	e ⁺ e [−] colliders	QED	Higher order logs	SANC Project	Outlook
000	0000⊕0000000000	000	0000000000		000
$\alpha_{QED}(m_Z^2)$	(z)				

An experimental relative accuracy of 3×10^{-5} on $\alpha_{QED}(m_Z^2)$ can be achieved at FCC-ee, from the measurement of the muon forward-backward asymmetry at energies ~ 3 GeV below and ~ 3 GeV above the Z pole. The corresponding parametric uncertainties on other SM parameters and observables will be reduced. [FCC Coll. EPJC'2019]

Z boson mass and width; R_l

Overall experimental uncertainties of 0.1 MeV or better are achievable for the Z mass and width measurements at FCC-ee. The corresponding parametric uncertainties on $\sin^2 \theta_W^{\rm eff}$ and m_W SM predictions are accordingly reduced to 6×10^{-7} and 0.12 MeV, respectively.

An absolute (relative) uncertainty of 0.001 (5×10^{-5}) on the ratio of the Z hadronic-to-leptonic partial widths (R_l) can be reached. The same relative uncertainty is expected for the ratios of the Z leptonic widths, which allows a stringent test of lepton universality.

[FCC Coll. EPJC'2019]

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	00000000000000	000	0000000000	0000	000

Forward-Backward Asymmetry

Andrej Arbuzov

000 00000000000 000 0000000 000 000 00	Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
	000	00000000000000	000	0000000000	0000	000

Left-Right Asymmetry

[A.A., S.Bondarenko, L.Kalinovskaya, Symmetry'2020]

000000000000000000000000000000000000000	1100110001010	$e^{\pm}e^{-}$ colliders	QED	Higher order logs	SANC Project	Outlook
	000	000000000000000	000	0000000000	0000	000

Tau lepton polarization

[A.A., S.Bondarenko, L.Kalinovskaya, Symmetry'2020]

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	000000000000000	000	0000000000	0000	000

Indirect measurements

[FCC Coll. EPJC'2019]

Andrej Arbuzov

e e con	iders QED	Higher order logs	SANC Project	Outlook
00000000	000000000000000000000000000000000000000	0000000000	0000	000

Alpha QCD

[FCC Coll. EPJC'2019]

Andrej Arbuzov

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	000000000000000000000000000000000000000	000	0000000000	0000	000

EW quasi observables (I)

Observable	Present			FCC-ee	FCC-ee	Source and
	value	\pm	error	(statistical)	(systematic)	dominant experimental error
$m_Z (keV/c^2)$	91 186 700	±	2200	5	100	Z line shape scan
						Beam energy calibration
$\Gamma_{\rm Z} \; ({\rm keV})$	2495200	\pm	2300	8	100	Z line shape scan
						Beam energy calibration
$\mathrm{R}^{\mathrm{Z}}_{\ell}~(imes 10^3)$	20 767	±	25	0.06	1	Ratio of hadrons to leptons
						Acceptance for leptons
$\alpha_{ m s}(m m_Z)~(imes 10^4)$	1196	\pm	30	0.1	1.6	$\mathrm{R}^{\mathrm{Z}}_{\ell}$ above
$R_b (\times 10^6)$	216 290	±	660	0.3	<60	Ratio of $b\bar{b}$ to hadrons
						Stat. extrapol. from SLD [7]
$\sigma_{ m had}^0~(imes 10^3)$ (nb)	41 541	\pm	37	0.1	4	Peak hadronic cross-section
						Luminosity measurement
$N_{\nu}(\times 10^3)$	2991	\pm	7	0.005	1	Z peak cross-sections
						Luminosity measurement
$\sin^2 \theta_{ m W}^{ m eff}(imes 10^6)$	231 480	±	160	3	2–5	${ m A}_{ m FB}^{\mu\mu}$ at Z peak
						Beam energy calibration
$1/lpha_{ m QED}(m m_Z)(imes 10^3)$	128952	±	14	4	Small	${ m A}_{ m FB}^{\mu\mu}$ off peak
$A_{FB}^{b,0}$ (×10 ⁴)	992	±	16	0.02	<1	b quark asymmetry at Z pole
						Jet charge

[A.Blondel et al., CERN YR 2019]

Andrej Arbuzov

Physics at Z-factory ...

28th Nov. 2024 15/39

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	000000000000000000000000000000000000000	000	0000000000	0000	000

EW quasi observables (II)

Observable	Present			FCC-ee	FCC-ee	Source and
	value	\pm	error	(statistical)	(systematic)	dominant experimental error
$\mathbf{A}^{\mathrm{pol},\tau}_{\mathrm{FB}}~(\times 10^4)$	1498	±	49	0.15	<2	τ polar. and charge asymm.
$m_W \; (keV/c^2)$	803 500	±	15000	600	300	au decay physics WW threshold scan
$\Gamma_{\rm W}~({\rm keV})$	208 500	±	42 000	1500	300	Beam energy calibration WW threshold scan
$\alpha_{\rm s}({ m m_W})(imes 10^4)$	1170	±	420	3	Small	Beam energy calibration R_{ℓ}^{W}
$N_{\nu}(\times 10^3)$	2920	±	50	0.8	Small	Ratio of invis. to leptonic
$m_{\rm top}~({\rm MeV}/c^2)$	172 740	±	500	20	Small	$t\bar{t}$ threshold scan
$\Gamma_{\rm top}~({\rm MeV/c^2})$	1410	±	190	40	Small	QCD errors dominate $t\bar{t}$ threshold scan
$\lambda_{tor} / \lambda^{SM}$	m = 1.2	+	03	0.08	Small	QCD errors dominate $t\bar{t}$ threshold scan
/top//top	m = 1.2	-	0.5	0.00	omun	QCD errors dominate
$t\bar{t}Z$ couplings		\pm	30%	<2%	Small	$E_{CM} = 365 \text{ GeV run}$

[A.Blondel et al., CERN YR 2019]

Andrej Arbuzov

Motivation	e ⁺ e [−] colliders	QED	Higher order logs	SANC Project	Outlook
000	000000000000000000	000	0000000000	0000	000
SMEFT					

- Possible deviations from SM predictions in differential and inclusive observables to be fit within SMEFT extension of the SM by 6 dim. operators
- Remind three oblique Peskin–Takeuchi parameters used at LEP. At a Z-factory one can (should) do a much more detailed study
- Scenarios of specific new physics models can be also verified
- N.B. Having polarized beams would help a lot

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	0000000000000000	000	0000000000	0000	000

Sensitivity to new physics scale

Andrej Arbuzov

Physics at Z-factory ...

Motivation	e ⁺ e ⁻ colliders	QED	Higher order logs	SANC Project	Outlook
000	ooooooooooooooo	●00	0000000000	0000	000

To-do list for QED

- Compute 2-loop QED radiative corrections to differential distributions of key processes: Bhabha scattering, muon decay, $e^+e^- \rightarrow \mu^+\mu^-$, $e^+e^- \rightarrow \pi^+\pi^-$, $e^+e^- \rightarrow ZH$ etc.
- Estimate higher-order contributions within some approximations
- Account for interplay with QCD and electroweak effects
- Construct reliable Monte Carlo codes

Motivation 000	e^+e^- colliders	QED o●o	Higher order logs 0000000000	SANC Project 0000	Outlook 000

Perturbative QED (I)

Fortunately, in our case the general perturbation theory can be applied:

$$\frac{lpha}{2\pi} \approx 1.2 \cdot 10^{-3}, \quad \left(\frac{lpha}{2\pi}\right)^2 \approx 1.4 \cdot 10^{-6}$$

Moreover, other effects: hadronic vacuum polarization, (electro)weak contributions, hadronic pair emission, etc. are small in, e.g., Bhabha scattering and can be treated one-by-one separately

Nevertheless, there are some enhancement factors:

1) First of all, the large logarithm $L \equiv \ln \frac{\Lambda^2}{m_e^2}$ where $\Lambda^2 \sim Q^2$ is the momentum transferred squared, e.g., $L(\Lambda = 1 \text{ GeV}) \approx 16$ and $L(\Lambda = M_Z) \approx 24$.

2) The energy region at the Z boson peak $(s \sim M_Z^2)$ requires a special treatment since factor M_Z/Γ_Z appears in the annihilation channel

Perturbative QED (II)

Methods of resummation of higher-order QED corrections

- Resummation of vacuum polarization corrections (geometric series)
- Yennie–Frautschi–Suura (YFS) soft photon exponentiation and its extensions, see, e.g., **PHOTOS**
- Resummation of leading logarithms via QED structure functions or QED PDFs (E.Kuraev and V.Fadin 1985;
 A. De Rujula, R. Petronzio, A. Savoy-Navarro 1979)

N.B. Resummation of real photon radiation is good for sufficiently inclusive observables...

Leading and next-to-leading logs in QED

The QED leading (LO) logarithmic corrections

$$\sim \left(rac{lpha}{2\pi}
ight)^n \ln^n rac{s}{m_e^2}$$

were relevant for LEP measurements of Bhabha, $e^+e^-\to\mu^+\mu^-$ etc. for $n\leq 3$ since $\ln(M_Z^2/m_e^2)\approx 24$

NLO contributions

$$\sim \left(rac{lpha}{2\pi}
ight)^n \ln^{n-1} rac{s}{m_e^2}$$

with at least n = 3, 4 are required for future e^+e^- colliders

In the collinear approximation we can get them within the NLO QED structure function formalism

- F.A.Berends, W.L. van Neerven, G.J.Burgers, NPB'1988
- A.A., K.Melnikov, PRD'2002; A.A. JHEP'2003

QED NLO master formula

The NLO Bhabha cross section reads

$$d\sigma = \sum_{a,b,c,d=e,\bar{e},\gamma} \int_{\bar{z}_1}^1 dz_1 \int_{\bar{z}_2}^1 dz_2 \mathcal{D}_{ae}^{\text{str}}(z_1) \mathcal{D}_{b\bar{e}}^{\text{str}}(z_2) \times \left[d\sigma_{ab \to cd}^{(0)}(z_1, z_2) + d\bar{\sigma}_{ab \to cd}^{(1)}(z_1, z_2) \right]$$

$$\begin{split} & \times \int_{\bar{y}_1}^1 \frac{dy_1}{Y_1} \int_{\bar{y}_2}^1 \frac{dy_2}{Y_2} \mathcal{D}_{ec}^{\mathrm{frg}} \left(\frac{y_1}{Y_1}\right) \mathcal{D}_{\bar{e}d}^{\mathrm{frg}} \left(\frac{y_2}{Y_2}\right) \\ & + \mathcal{O}\left(\alpha^n L^{n-2}, \frac{m_e^2}{s}\right) \end{split}$$

 $\alpha^2 L^2$ and $\alpha^2 L^1$ terms are completely reproduced [A.A., E.Scherbakova, JETP Lett. 2006; PLB 2008] || $\bar{e} \equiv e^+$

Motivation e	e ⁺ e ⁻ colliders	QED	Higher order logs	SANC Project	Outlook
000 0	000000000000000000000000000000000000000	000	000000000	0000	000

High-order ISR in e^+e^- annihilation

$$\frac{d\sigma_{e^+e^-\to\gamma^*}}{ds'} = \frac{1}{s}\sigma^{(0)}(s')\sum_{a,b=e^-,\gamma,e^+} D_{ae^-}\otimes\tilde{\sigma}_{ab\to\gamma^*}\otimes D_{be^+}$$

Contributions from $D_{e^-e^+}$ and $D_{e^+e^-}$ are missed in [J. Ablinger, J. Blümlein, A. De Freitas and K. Schönwald, "Subleading Logarithmic QED Initial State Corrections to $e^+e^- \rightarrow \gamma^*/Z^{0^*}$ to $O(\alpha^6 L^5)$," NPB 955 (2020) 115045]

Andrej Arbuzov

Physics at Z-factory ...

28th Nov. 2024 24/39

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	000000000000000000	000	000000000	0000	000

QED NLO DGLAP evolution equations

$$\mathcal{D}_{ba}\left(x,\frac{\mu_R}{\mu_F}\right) = \delta_{ab}\delta(1-x) + \sum_{c=e,\gamma,\bar{e}} \int_{\mu_R^2}^{\mu_F^2} \frac{dt}{t} \int_x^1 \frac{dy}{y} P_{bc}(y,t) \mathcal{D}_{ca}\left(\frac{x}{y},\frac{\mu_R^2}{t}\right)$$

 μ_F is a factorization (energy) scale

 μ_R is a renormalization (energy) scale

 D_{ba} is a parton density function (PDF)

 P_{bc} is a splitting function or kernel of the DGLAP equation

N.B. In QED $\mu_R = m_e \approx 0$ is the natural choice

Running coupling constant

Compare **QED-like**

$$\bar{\alpha}(t) = \alpha \left\{ 1 + \frac{\alpha}{2\pi} \left(-\frac{10}{9} + \frac{2}{3}L \right) + \left(\frac{\alpha}{2\pi}\right)^2 \left(-\frac{13}{27}L + \frac{4}{9}L^2 + \dots \right) + \dots \right\}$$

and QCD-like

$$\bar{\alpha}(t) = \frac{4\pi}{\beta_0 \ln(t/\Lambda^2)} \left[1 - \frac{\beta_1}{\beta_0^2} \frac{\ln[\ln(t/\Lambda^2)]}{\ln(t/\Lambda^2)} + \dots \right]$$

Note that "-10/9" could have been hidden into Λ

In QED $\beta_0 = -4/3$ and $\beta_1 = -4$

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000		000	0000000000	0000	000

$\mathcal{O}(\alpha)$ matching

The expansion of the master formula for ISR gives

$$d\sigma_{e\bar{e}\to\gamma^*}^{(1)} = \frac{\alpha}{2\pi} \left\{ 2LP^{(0)} \otimes d\sigma_{e\bar{e}\to\gamma^*}^{(0)} + 2d_{ee}^{(1)} \otimes d\sigma_{e\bar{e}\to\gamma^*}^{(0)} \right\} + d\,\bar{\sigma}_{e\bar{e}\to\gamma^*}^{(1)} + \mathcal{O}\left(\alpha^2\right)$$

We know the massive $d\sigma^{(1)}$ and massless $d\bar{\sigma}^{(1)}$ $(m_e \to 0 \text{ with } \overline{\text{MS}} \text{ subtraction})$ results in $\mathcal{O}(\alpha)$. E.g.

$$\frac{d\sigma_{e\bar{e}\to\gamma^*}^{(1)}}{d\sigma_{e\bar{e}\to\gamma^*}^{(0)}} = \frac{\alpha}{\pi} \left[\frac{1+z^2}{1-z}\right]_+ \left(\ln\frac{s}{m_e^2} - 1\right) + \delta(1-z)(\ldots), \quad z \equiv \frac{s'}{s}$$

Scheme dependence comes from here

Factorization scale dependence is also from here

N.B. "Massification procedure"

Andrej Arbuzov

Physics at Z-factory ...

Factorization scale choice

We apply the BLM-like prescription, i.e., hide the bulk of one-loop correction into the scale

For e^+e^- annihilation

$$\frac{d\sigma_{e\bar{e}\to\gamma^*}^{(1)}}{d\sigma_{e\bar{e}\to\gamma^*}^{(0)}} = \frac{\alpha}{\pi} \left[\frac{1+z^2}{1-z} \right]_+ \left(\ln \frac{s}{m_e^2} - 1 \right) + \delta(1-z)(\ldots) \Rightarrow \mu_F^2 = s \quad \text{or } \mu_F^2 = \frac{s}{e}$$

Remind Drell-Yan where we usually take $\mu_F^2 = s' \equiv zs$, i.e., the energy scale of the hard subprocess (?!)

For muon decay $\mu_F = m_{\mu}$ is good, but $\mu_F = m_{\mu}z(1-z)$ is better. It was cross-checked with the help of (partially) known two-loop results [K.Melnikov et al. JHEP'2007]

Motivation 000	e ⁺ e ⁻ colliders 000000000000000	QED 000	Higher order logs 0000000●000	SANC Project 0000	Outlook 000

Iterative solution

The NLO "electron in electron" PDF reads [A.A., U.Voznaya, JPG 2023]

$$\begin{split} \mathcal{D}_{ee}(x,\mu_{F},m_{e}) &= \delta(1-x) + \frac{\alpha}{2\pi} LP_{ee}^{(0)}(x) + \frac{\alpha}{2\pi} d_{ee}^{(1)}(x,m_{e},m_{e}) \\ &+ \left(\frac{\alpha}{2\pi}\right)^{2} L^{2} \left(\frac{1}{2} P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \frac{1}{2} P_{ee}^{(0)}(x) + \frac{1}{2} P_{e\gamma}^{(0)} \otimes P_{\gamma e}^{(0)}(x)\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^{2} L \left(P_{e\gamma}^{(0)} \otimes d_{\gamma e}^{(1)}(x,m_{e},m_{e}) + P_{ee}^{(0)} \otimes d_{ee}^{(1)}(x,m_{e},m_{e}) - \frac{10}{9} P_{ee}^{(0)}(x) + P_{ee}^{(1)}(x)\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^{3} L^{3} \left(\frac{1}{6} P_{ee}^{(0)} \otimes P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \frac{1}{6} P_{e\gamma}^{(0)} \otimes P_{\gamma \gamma}^{(0)} \otimes P_{\gamma e}^{(0)}(x) + \ldots\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^{3} L^{2} \left(P_{ee}^{(0)} \otimes P_{ee}^{(1)}(x) + P_{ee}^{(0)} \otimes P_{ee}^{(0)} \otimes d_{ee}^{(1)}(x,m_{e},m_{e}) + \frac{1}{3} P_{ee}^{(1)}(x) - \frac{10}{9} P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \ldots\right) \\ &+ \mathcal{O}(\alpha^{2} L^{0}, \alpha^{3} L^{1}) \end{split}$$

The large logarithm $L \equiv \ln \frac{\mu_F^2}{\mu_R^2}$ with factorization scale $\mu_F^2 \sim s$ or $\sim -t$; and renormalization scale $\mu_R = m_e$.

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	000000000000000000000000000000000000000	000	00000000000	0000	000

Higher-order effects in e^+e^- annihilation

$$d\sigma_{e\bar{e}\to\gamma^*}^{\mathrm{NLO}} = d\sigma_{e\bar{e}\to\gamma^*}^{(0)} \left\{ 1 + \sum_{k=1}^{\infty} \left(\frac{\alpha}{2\pi}\right)^k \sum_{l=k-1}^k \delta_{kl} L^l + \mathcal{O}(\alpha^k L^{k-2}) \right\}$$

[A.A., U.Voznaya, PRD'2024]

Andrej Arbuzov

Physics at Z-factory ...

ISR corrections to $e^+e^- \rightarrow Z(\gamma^*)$ $(\sqrt{s} = M_Z)$

LO $\mathcal{O}(\alpha^n L^n)$ and NLO $\mathcal{O}(\alpha^n L^{n-1})$ ISR corrections in % at the Z-peak for $z_{\min} = 0.1$

Type / n	1	2	3	4	5
LO γ	-32.7365	4.8843	-0.3776	0.0034	0.0032
NLO γ	2.0017	-0.5952	0.0710	-0.0019	
LO pair		-0.3057	0.0875	0.0016	-0.0001
NLO pair		0.1585	-0.0460	0.0038	
Σ	-30.7348	4.1419	-0.2651	0.0069	0.0031

N.B. $\mathcal{O}(\alpha^2 L^0)$ ISR corrections are known [Berends; Blümlein]

Impact of new corrections on LEP results?!

PRELIMINARY NUMBERS

QED PDFs vs. QCD ones

Common properties:

- QED splitting functions = abelian part of QCD ones
- The same structure of DGLAP evolution equations
- The same Drell-Yan-like master formula with factorization
- Factorization scale and scheme dependence

Peculiar properties:

- QED PDFs are calculable
- QED PDFs are less inclusive
- QED renormalization scale $\mu_R = m_e$ is preferable
- QED PDFs can (do) lead to huge corrections
- Massification procedure

Publications:

SANC - CPC 174 481-517 MCSANC - CPC 184 2343-2350; JETP Letters 103, 131-136 SANCphot - CPC 294 108929 ReneSANCe - CPC 256 107445; CPC 285 108646

 ${\rm SANC\ products\ are\ available\ at\ http://sanc.jinr.ru/download.php}$

 $ReneSANCe \ is \ also \ available \ at \ http://renesance.hepforge.org$

Andrej Arbuzov

Physics at Z-factory ...

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	000000000000000	000	0000000000	0000	000

SANC advantages:

- full one-loop electroweak corrections
- leading higher order corrections
- massive case
- accounting for polarization effects
- full phase space operation
- results of ReneSANCe event generator and SANC integrators are thoroughly cross checked

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	00000000000000000	000	0000000000	0000	000

Basic processes of SM for e^+e^- annihilation

The cross sections are given for polar angles between $10^{\circ} < \theta < 170^{\circ}$ in the final state.

Andrej Arbuzov

Physics at Z-factory ...

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	000000000000000000000000000000000000000	000	0000000000	0000	000

ReneSANCe Monte Carlo event generator

- Based on the SANC modules
- Complete one-loop and some higher-order electroweak radiative corrections
- Unweighted events in ROOT and LHE format
- Thoroughly cross checked against MCSANC integrator

Motivation 000	<i>e</i> ⁺ <i>e</i> ⁻ colliders 000000000000000	QED 000	Higher order logs 0000000000	SANC Project 0000	Outlook ●00

Outlook

- A new high-energy e^+e^- collider is well motivated by the necessity to study SM in more detail
- Complementarity to hadron-hadron machines is essential
- A Z-factory provides unique possibilities for progress in HEP
- New theoretical calculations of higher-order corrections are required
- Chains of interfaced Monte Carlo codes to be developed
- The work is started, but there are still many tasks

Electron is as inexhaustible as atom (1909)

Andrej Arbuzov

Physics at Z-factory ...

Motivation	e^+e^- colliders	QED	Higher order logs	SANC Project	Outlook
000	000000000000000000000000000000000000000	000	0000000000	0000	000

Thank you for attention!