

Поиск мюонного катализа ядерного d^3He синтеза

А.А. Васильев, М.Е. Взнуздаев, А.А. Воробьев, Н.И. Воропаев, В.А.Ганжа, К.А.Ившин, Л.М.Коченда, П.А. Кравцов, <u>П.В. Кравченко</u>, Е.М.Маев, С.М.Микиртычьянц, А.В.Надточий, А.Н. Соловьев, И.Н.Соловьев, В.А.Трофимов, В.Д. Фотьев

- Введение
- Современная мотивация для проведения эксперимента
- Методика эксперимента
- 🖻 Анализ данных
- Результаты

Семинар ОФВЭ 26 ноября 2024

Мюонный катализ

$$m_{\mu} \approx 207 m_e$$

Мюон может образовывать связанные системы совместно с ядрами изотопов водорода

Fusion with muons Nuclei easily approach each other μī No repulsion by electromagnetic forces up to the size of a muonic molecule

МСF эксперимент **предоставляет уникальную возможность** измерить скорость реакции в области сверх-низких энергий без влияния электронного экранирования

Регистрация синтеза в мюонном катализе - важное подтверждение теории MFC

$d + {}^{3}He \rightarrow {}^{4}He(3.66MeV) + p(14.64MeV)$

Мюонный катализ позволяет изучать реакцию при практически нулевой энергии

 $E \leq 1 keV$

Синтез происходит в ${}^{3}Hed\mu$ мезомолекуле

$$d\mu^3 He \rightarrow {}^4He(3.66MeV) + p(14.64MeV) + \mu$$

Формирование молекулы происходит при столкновении медленных атомов

Yu.A. Aristov, A.V. Kravtsov, N.P. Popov Yad.Fiz. 33 (1981)1066

$$d\mu + {}^{3}He \stackrel{\lambda_{f}^{J}}{\rightarrow} ({}^{3}Hed\mu)_{J}$$

Распад

L.N. Bogdanova, S.S. Gershtein, L.I. Ponomarev PSI-PR-97-33 October 1997

γ-излучение

Оже-переход

 $({}^{3}Hed\mu)_{J} \xrightarrow{\lambda_{\gamma}} (\mu^{3}He)_{1s} + d + \gamma$ $({}^{3}Hed\mu)_{J} \xrightarrow{\lambda_{A}} (\mu^{3}He)_{1s} + d + e$

прямая диссоциация

$$({}^{3}Hed\mu)_{J} \xrightarrow{\lambda_{p}} (\mu^{3}He)_{1s} + d$$

Переход

 $(d\mu^3 He)_{J=1} \rightarrow (d\mu^3 He)_{J=0}$

M.P. Faifman, L.I. Men'shikov Hyperfine Int. 118, 187 (1999)

как следствие наблюдаемый $d\mu^3 He$ ядерный синтез со скоростью реакции $\lambda_f = P_0 \lambda_f^0 + P_1 \lambda_f^1$ $\lambda_f = 2.5 \cdot 10^4 s^{-1}, \quad \lambda_f (J=0) = 2.5 \cdot 10^5 s^{-1}, \quad \lambda_f (J=1) = 6.5 \cdot 10^2 s^{-1}$

П.Кравченко

Семинар ОФВЭ 26 ноября 2024

Е.М.Маеv et al. Hyperfine Int. 118, 171 (1999) Верхний предел для скорости реакции

Experiment	Year	Gas mixture	Fusion rate	Comments
			$\lambda_{ m f},{ m s}^{-1}$	
PNPI	1990	$D_2 + {}^{3}He(5\%)$	$< 4 \cdot 10^{8}$	Upper limit
			/	7070 CL
PNPI-PSI	1998	$HD + {}^{3}He(5,6\%)$	< 6 · 104 ⊭	Upper limit
			фактор 10!!	90% CL
JINR-PSI	1998/2006	$D_2 + {}^{3}He(5\%)$	$(4.5\pm2.6/2.0)\cdot10^{5}$	Possible
		2		observation
			первое	наблюдение реакции
			V.M.Bystritsky et al. I	Eur. Phys. J. 38(3), 455 (2006)
Theory M.Faifman	1999		2.5.104	precision 30%

🕢 Первичный нуклеосинтез в модели Большого Взрыва

Ключевая роль ядерных реакции синтеза в области низких энергий в предсказании теории (SBBN) об образовании легких ядер и распространенности элементов

> R.G.Pizzone et al. IOP Conf.Series: Journal of Physics: Conf.Series 1078 (2018) 012017 R.S.de Souza, C. Iliadis and A. Coc. The Astrophysical Journal 872:75 (2019)

Прямые эксперименты:

- распространенность изотопов соответствует прогнозам SBBN для H(D), ⁴He

- экспериментально определен лишь верхний предел для ³Не

- предсказания для ⁷Li расходятся с наблюдениями

A. Coc, E. Vangioni. J.Phys.:Conf.Ser. 202 012001 (2010)

5% ошибка измерения скорости реакции соответствует 4% изменению теоретического предсказания для ³Не и ⁷Li

При наличии большого количества прямых экспериментов вычисление скорости реакции из измеренных сечений остается сложной задачей

Необходима экстраполяция данных в область сверхнизких энергий

С астрофизическим S(E)-фактором процедура экстраполяции значительно проще

При низких энергиях измерения S-фактора демонстрируют выраженный рост связанный с эффектом электронной экранировки

Превышение экранированного сечения по отношению к сечению на "голом"ядре учитывается путем введения дополнительного параметра U_e

$$\frac{\sigma_s(E)}{\sigma_b(E)} = \frac{S_s(E)}{S_b(E)} \frac{E}{(E+U_e)} \exp(\pi \eta U_e/E)$$

The experimental values of the electron screening potentials, U_e^{exp} , and theoretical adiabatic limits, U_e^{adlim} .

	Reaction	U ^{adlim} (eV)	U ^{exp} (eV)	Note	Ref.
[1]	${}^{2}H(d,t)^{1}H$	14	19.1±3.4		[16.17]
[2]	3 He(d, p) ⁴ He	65	109 ± 9	D ₂ gas target	[18]
[3]	³ He(<i>d</i> , <i>p</i>) ⁴ He	120	219±7		[18]
[4]	³ He(³ He,2p) ⁴ He	240	305 ± 90	compilation	[2]
[5]	6 Li(d, α) 4 He	175	330±120	H gas target	[19]
[6]	${}^{6}\text{Li}(d, \alpha)^{4}\text{He}$	175	330±49		[19,20]
[7]	⁶ Li(p, α) ³ He	175	440±150	H gas target	[19]
[8]	${}^{6}Li(p, \alpha)^{3}He$	175	355±67		[19,21,22]
[9]	⁷ Li(p, α) ⁴ He	175	300±160	H gas target	[19]
[10]	⁷ Li(p, α) ⁴ He	175	363±52		[19,21,23]
[11]	⁹ Be(p, α_0) ⁶ Li	240	788±70		[24,25]
[12]	${}^{10}\mathrm{B}(p,\alpha_0)^7$	340	376±75		[26,27]
[13]	${}^{11}\mathrm{B}(p,\alpha_0)^8\mathrm{Be}$	340	447±67		[26,28]

Результат сильно зависит от набора данных и теоретической модели. Если реакция идет через резонанс, описание сечения усложняется

Two channel approximation of R-matrix theory

R.S.de Souza,.. The Astrophysical Journal 872:75 (2019) ³He(d,p)⁴He □ Ali01a Потенциал экранирования как 15 Ali01b Cos00 параметр фитирования S-Factor (MeV b) Gei99 imes Kra87 Mol80 + Zhi77 Процедура фитирования зависит от набора данных \textbf{S}_{bare} 5 Экстраполяция сечения в область сверхнизких энергий 0 Φ (MeV b) 0.1 0.01 Energy (MeV) Результат превышает адиабатический предел

Объяснить расхождение пока не удается

П.Кравченко

При таком подходе сложно получить абсолютное сечение на "голом" ядре, экстраполяция S-фактора в область сверхнизких энергий затруднена из-за наличия резонанса

Эксперимент по изучению мюонного катализа реакций синтеза позволяет получить сечение на "голом" ядре в области сверхнизких энергий

Эксперимент MuSun

Главная цель эксперимента MuSun - $\mu^- + d \to n + n + \nu$ измерение скорости захвата Λ_d мюона на дейтроне с точностью 1.5%

Ключевой элемент установки

TPC - криогенная время-проекционная камера (31K, 5bar) как активная газовая мишень и детектор заряженных частиц

ТРС детектирует мюоны, кот. остановились в центре, а так же заряженные продукты реакции

 $d + {}^{3}He \rightarrow {}^{4}He(3.66MeV) + p(14.64MeV)$

Электроника Санных. Топология события

1. Остановка мюона в центре камеры. Пад остановки.

Анализ данных. Топология события

1. Остановка мюона в центре камеры. Пад остановки.

Семинар ОФВЭ 26 ноября 2024

Анализ данных. Топология события

1. Остановка мюона в центре камеры. Пад остановки.

2. На паде остановки второй сигнал большой амплитуды.

3. Сигналы на первом и втором кольцах вокруг пада остановки, последовательно перекрывающиеся свободный пробег

	E(MeV)	$\mathrm{E}_{obs}(\mathrm{MeV})$	R(mm)
³ He	0.82	0.32	0.3
n	2.45	0-2.5	(long)
μ^{3} He	0.80	0.50	0.6
t	1.01	~ 0.8	0.9
р	3.02	~ 3	12.9
α	3.66		1.7
p	14.64		190

🕢 Анализ данных. Отбор полезных событий

П.Кравченко

Семинар ОФВЭ 26 ноября 2024

Анализ данных. Отбор полезных событий

19

🚱 Анализ данных. Источники фона

"Синтез-на-лету" в MuSun эксперименте. Run 8

Тhe MuSun оказался "идеальным" экспериментом по изучению d^{3} Не "синтез-на-лету" реакции (ultra-clean D₂, 6.3·10⁹ muon stops)

 $dd\mu \rightarrow d + {}^{3}He(0.82MeV) \rightarrow {}^{4}He(3.66MeV) + p(14.64MeV)$

Все параметры схемы известны так же как и сечение ${}^{3}\text{He}(0.82\text{MeV}) + d \rightarrow 4\text{He}+p$ реакции.

Это позволяет предсказать число "синтезов-на-лету", которое должно зарегистрироваться в ТРС.

Сравнение с зарегистрированным числом определило эффективность регистрации ~30%.

Так же была протестирована процедура отбора полезных событий

💽 Анализ данных. "Синтез-на-лету"

Cross-check

События-кандидаты

П.Кравченко

Cross-check

События-кандидаты

Семинар ОФВЭ 26 ноября 2024

Статистика и результаты

	run	μ stop	Weeks	ЗНе	µ3Hed	Ntot	NFinF	Npileup
HD+He	Run10(2022)	3.85E+09	3	4.00E+05	3.94E+08			<0.005
3	Run10(2021)	1.68E+09	3	1.75E+05	1.72E+08	9		20.005
D2+He	Run9	1.0E+09	1	3.34E+05	9.30E+07		1.9±0.22	0.34±0.07
D 2	Run8	6.3E+09	4	1.28E+07		99	77	22

вероятность протекания синтеза в мезомолекуле

 $\lambda_{dec} = 7 \cdot 10^{11} \ s^{-1}$

модельно независимый

экспериментально измеренный параметр
$$P_F({}^3He\mu d{
ightarrow}{}^4He+p+\mu)=N_F/[N_{}^3He\mu d\epsilon_F]$$

"эффективная" скорость реакции синтеза

$$\lambda_F = \lambda_{dec} P_F = \lambda_{dec} N_F / N_{^3He\mu d} \epsilon_F$$

эффективность регистрации

 $\epsilon_f = 0.30$

$$P_F = (1.44 \pm 0.32) \times 10^{-7}$$

$$\lambda_F = (10.08 \pm 2.24) \times 10^4 \ s^{-1}$$

Е.М.Маеv et al. Hyperfine Int. 118, 171 (1999) Верхний предел для скорости реакции

Experiment	Year	Gas mixture	Fusion rate $\lambda_{\rm f}$, s ⁻¹	Comments
PNPI	1990	$D_2 + {}^{3}He(5\%)$	< 4.108	Upper limit 90% CL
PNPI-PSI	1998	$HD + {}^{3}He(5,6\%)$	< 6.104	Upper limit 90% CL
JINR-PSI	1998/2006	$D_2 + {}^{3}He(5\%)$	(4.5±2.6/2.0)·10 ⁵	Possible observation
			ΠeβBOe V.M.Bystritsky et al. I	наблюдение реакции Eur. Phys. J. 38(3), 455 (2006)
Theory M.Faifman	1999		2.5·10 ⁴	precision 30%
PNPI-PSI	2015-2016	$D_2 + {}^{3}He(5\%)$	< 7.7.104	Upper limit 90% CL
PNPI-PSI	2017-2021	HD + ³ He(11.3%)	(1.01±0.22)·10 ⁵	Preliminary

- 1. В эксперименте зарегистрированы события мюонного катализа d³He синтеза, что является экспериментальным подтверждением теории MCF
- 2. Получен предварительный результат по измерению
 - модельно независимой вероятности протекания d³He синтеза при распаде [d³Heµ]_J мезомолекулы образованной в HD + ³He газовой смеси при температуре 31K
 - а так же скорость реакции синтеза
- 3. Результат не согласуется в теоретическим предсказанием
 - дополнительная проверка вычислений
 - проверка теоретических расчетов
 - вычисление S-фактора

Спасибо за внимание!!