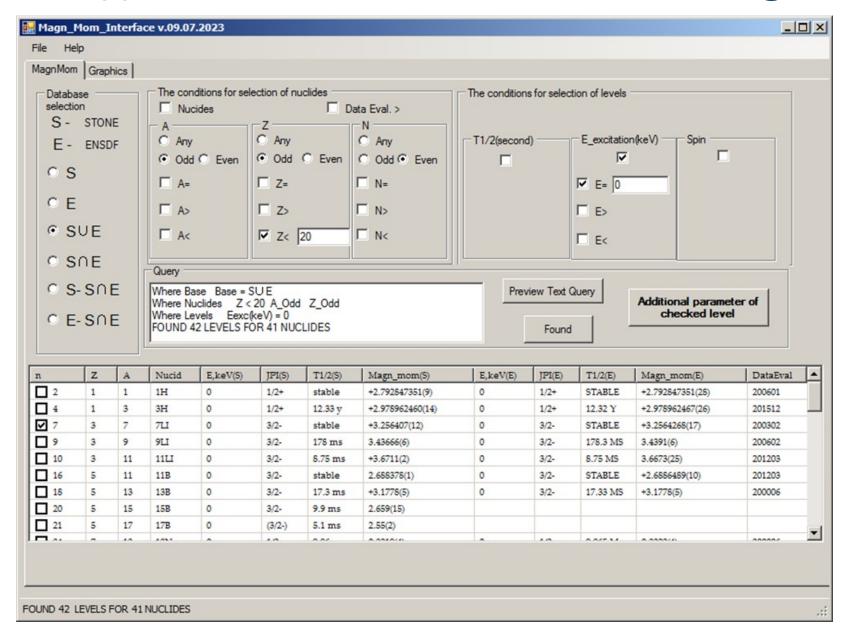

БАЗА ДАННЫХ И СИСТЕМАТИКА МАГНИТНЫХ МОМЕНТОВ ЯДЕР

Л.П.Кабина, Э.М.Мбабази, И.А.Митропольский

Об авторах

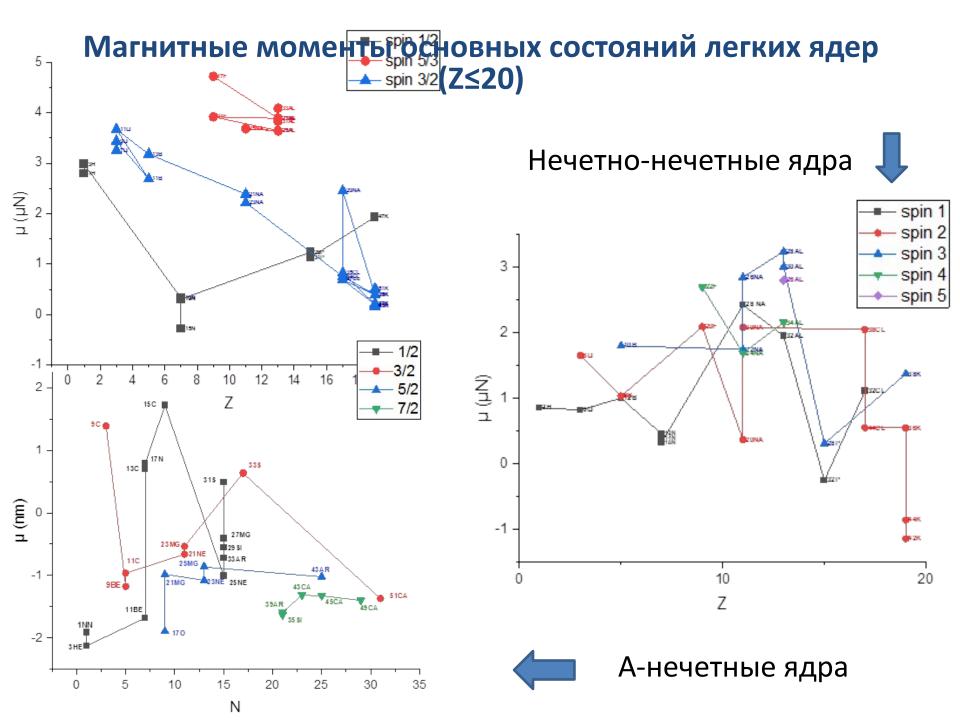
Людмиле Петровне Кабиной 20 октября 2024 г. исполнилось 80 лет. Доброго здоровья!

Методы измерения ядерных магнитных моментов

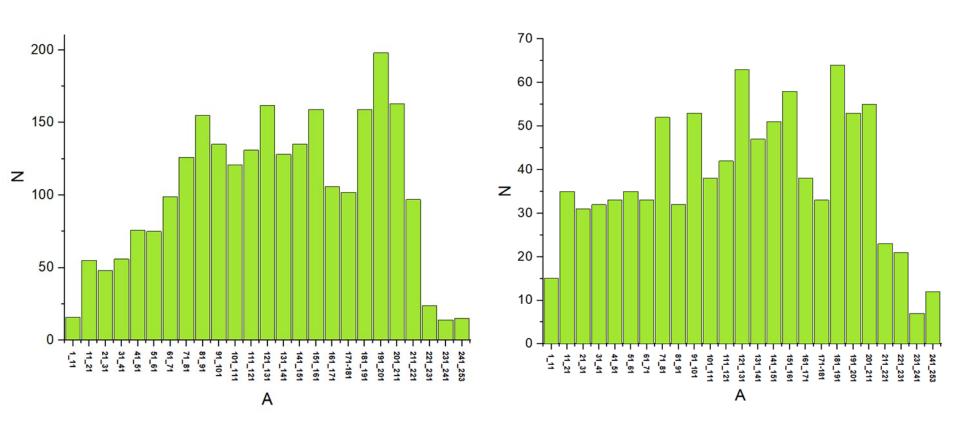

 $E = \cdot$

- Атомно-лучевой магнитный резонанс (АВ)
- Атомно-лучевая лазерная спектроскопия (ABLS)
- Двойной электронно-ядерный резонанс (ENDOR)
- Электронный парамагнитный резонанс (EPR)
- Рассеяние электронов (ES)
- Молекулярно-лучевой магнитный резонанс (МВ)
- Ядерный магнитный резонанс (NMR)

Экспериментальные значения

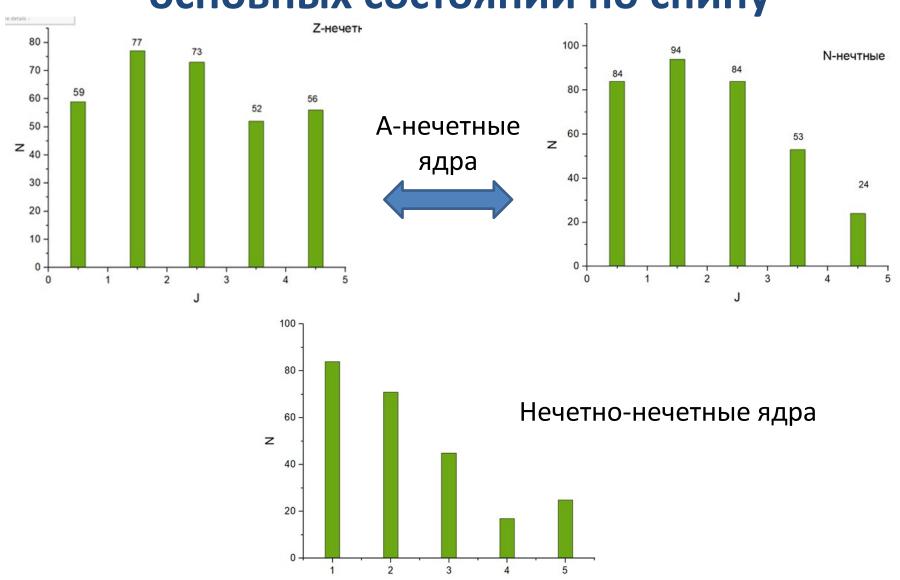

- 1. Авотина М.П., Золотавин А.В. Моменты основных и возбужденных состояний ядер. Атомиздат, М., 1979, ч.1 328 с.
- 2. Stone N.J.. Table of recommended nuclear magnetic dipole moments. IAEA, 2019, INDC(NDS)-0794 56 p.
- 3. ENSDF: Evaluated Nuclear Structure Data File. https://www.nndc.bnl.gov/ensdf/.

База данных магнитных моментов MagDa



2558 магнитных моментов в 1246 нуклидах:

Z	Nuclid	A	Z	112	DT1/2	Spin/Parity	Method	μSTON	DμSTON	μ(ENSDF 2022 r)	Dμ(ENSDF 2022 η))n(6ee3)	Оµ(База)	гироматинтное отношене(g)
\vdash		-		8	8			μ_N	μ_N	μ_N	μ_N	μ_Ν	μ_N	h/2π
0	1n	1	1	613,9	0.6	1/2+	NMR, R	-1,9130427	5,00E-06	-1,9130427	5,00E-07	-1,9130427	5,00E-07	-3,8260854
$\overline{}$	1H	1	0	stable	-,-	1/2+	M/N, R	2,792847351	9,00E-09	2,792847351	2,80E-05	2,792847351	2,80E-05	5,585694702
1	2H	2	1	stable		1+	R	0,857438231	5,00E-09	0,85743823	2,40E-07	0,85743823	2,40E-07	0,85743823
1	3H	3	2	3,89E+08	6,31E-05	1/2+	R	2,97896246	1,40E-08	2,978962467	2,60E-08	2,978962467	2,60E-08	5,957924934
2	ЗНе	3	1	stable		1/2+	R	-2,12762531	3,00E-08	-2,127625306	2,50E-07	-2,127625306	2,50E-07	-4,255250612
3	6Li	6	3	stable		1+	NMR	0,822043	3,00E-06	0,82205667	2,60E-07	0,82205667	2,60E-07	0,82205667
-	7Li	7	4	stable	Y .	3/2-	NMR	3,256407	1,20E-05	3,2564268	1,70E-06	3,2564268	1,70E-06	2,1709512
$\overline{}$	8Li	8	5	0,8399	0,0009		b-NMR	1,6535	2,00E-05	1,65356	1,80E-05	1,65356	1,80E-05	0,82678
$\overline{}$	9Li	9	6	0,1783	0,0004		b-NMR	3,43666	6,00E-05	3,4391	3,00E-04	3,4391	3,00E-04	2,292733333
	11Li	11	8	0,00875	0,00014		b-NMR	3,6711	2,00E-04	3,6673	0,0025	3,6673	0,0025	2,444866667
$\overline{}$	9Be	9	5	stable		3/2-	NMR	-1,17743	5,00E-06	-1,1778	9,00E-04	-1,1778	9,00E-04	-0,7852
-	11Be 88	11	7	13,76		1/2+	b-NMR	-1,6816	8,00E-04	-1,6814	0,0009	-1,6814	0,0009	-3,3628
_	108	10	5	0,77 stable	0,003	3+	b-NMR NMR	1,0355	3,00E-04 8,00E-07	1,0355	0,0003 6,00E-08	1,0355 1,80064478	0,0003 6,00E-08	0,51775
-	11B	11		stable	73	3/2-	NMR	2,688378	1,00E-06	2,6886489	1,00E-06	2,6886489	1,00E-06	1,7924326
-	12B	12	7	0,0202	0,00002		b-NMR	1,00306	1,50E-04	1,00306	0,00015	1,00306	0,00015	1,00306
$\overline{}$	13B	13	8	0,0173	0,00017		b-NMR	3,1778	5,00E-04	3,1778	5,00E-04	3,1778	5,00E-04	2,118533333
$\overline{}$	148	14	9	0,0125		2-	b-NMR	1,185	5,00E-03			1,185	5,00E-03	0,5925
5	158	15	10	0,0099		3/2-	b-NMR	2,659	1,50E-02			2,659	1,50E-02	1,772666667
5	178	16	11	0,0051		3/2-	b-NMR	2,55	2,00E-02			2,55	2,00E-02	1,7
6	9C	9	3	0,1265	0,001	3/2-	b-NMR	-1,3914	5,00E-04	-1,3914	5,00E-04	-1,3914	5,00E-04	-0,9276
6	11C	11	5	1222	0,84	3/2-	AB, R	-0,964	1,00E-03	-0,964	1,00E-03	-0,964	1,00E-03	-0,642666667


Распределения магнитных моментов ядер по массовому числу

Все 2558 состояний в 1246 нуклидах

Только основные состояния 906 нуклидов

Распределения магнитных моментов основных состояний по спину

Магнитные моменты

Свободные нуклоны:

$$\mu_p = 2,792847356(23) \mu_N$$

 $\mu_n = -1,9130427(5) \mu_N$

- ядерный магнетон Бора

Ядро как система движущихся нуклонов:

$$H_{int} = -\frac{1}{c} \int d^3 \quad j_{\mu} \cdot A^{\mu} = i \int d^3 \quad \left[\rho(\quad ,t) \Phi(\quad ,t) - \frac{1}{c} \quad (\quad ,t) \cdot \quad (\quad ,t) \right] i$$

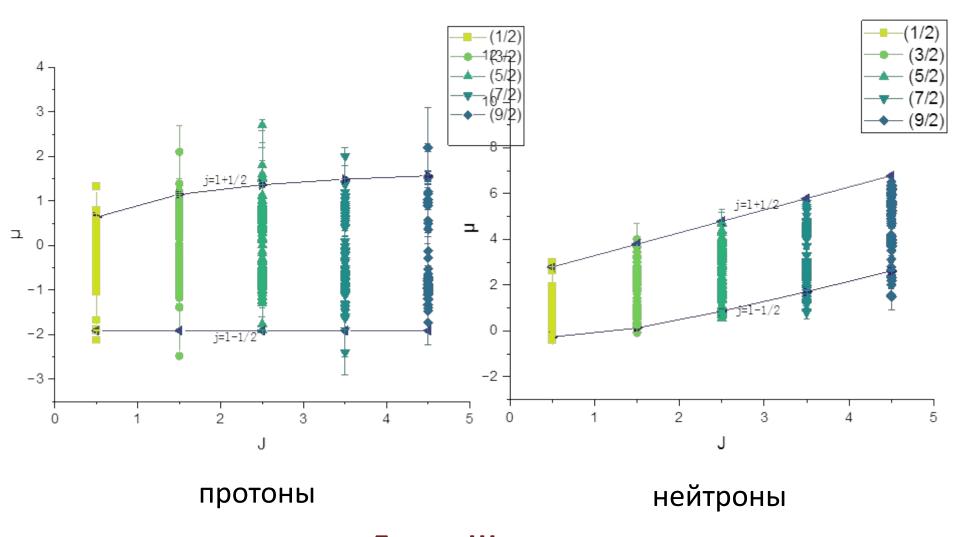
$$\Delta \Phi - \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} = -4\pi \rho$$
$$\Delta A - \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2} = -\frac{4\pi}{c} j.$$

Магнитные моменты

$$\boldsymbol{H}_{\text{int}} = \sum_{\lambda\mu} \left(a_{\lambda\mu} \boldsymbol{Q}_{\lambda\mu} + b_{\lambda\mu} \boldsymbol{M}_{\lambda\mu} \right)$$

$$\mathbf{Q}_{\lambda\mu} = \int \rho(\vec{r}) r^{\lambda} Y_{\lambda\mu}(\vartheta, \varphi) d^{3}r = e \sum_{i=1}^{A} \left(\frac{1}{2} - t_{3}^{(i)}\right) r_{i}^{\lambda} Y_{\lambda\mu}(\vartheta_{i}, \varphi_{i})$$

$$\boldsymbol{M}_{\lambda\mu} = \int \vec{\mu}(\vec{r}) \cdot \nabla (r^{\lambda} Y_{\lambda\mu}(\vartheta, \varphi)) d^{3}r = \mu_{N} \sum_{i=1}^{A} \left\{ g_{s}^{(i)} \vec{s}_{i} + \frac{2}{\lambda + 1} g_{l}^{(i)} \vec{l}_{i} \right\} \cdot \nabla (r_{i}^{\lambda} Y_{\lambda\mu}(\vartheta_{i}, \varphi_{i}))$$

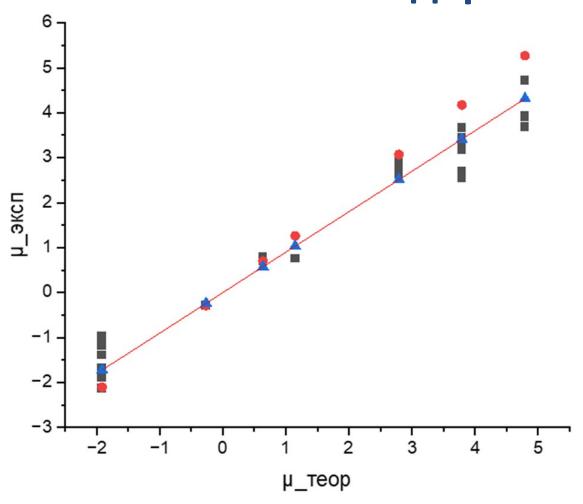

$$\mu = \sqrt{\frac{4\pi}{3}} \langle j, m = j | j, m = j \rangle$$

Модель независимых частиц со сферической симметрией

$$\mu = \mu_{N} \begin{cases} \left(j - \frac{1}{2}\right)g_{l} + \frac{1}{2}g_{s}, j = l + \frac{1}{2} \\ \frac{j}{j+1} \left[\left(j + \frac{3}{2}\right)g_{l} - \frac{1}{2}g_{s}\right]j = l - \frac{1}{2} \end{cases}$$

орбиталь <i>I, j</i>	четность (-1) [/]	протоны $g_i = 1, g_s = 5.586$	нейтроны g_l =0, g_s =-3.826
s 1/2	+	2.793	-1.913
p 3/2	-	3.793	-1.913
p 1/2		-0.264	0.638
d 5/2	+	4.793	-1.913
d 3/2		0.124	1.148
f 7/2	-	5.793	-1.913
f 5/2		0.862	1.366

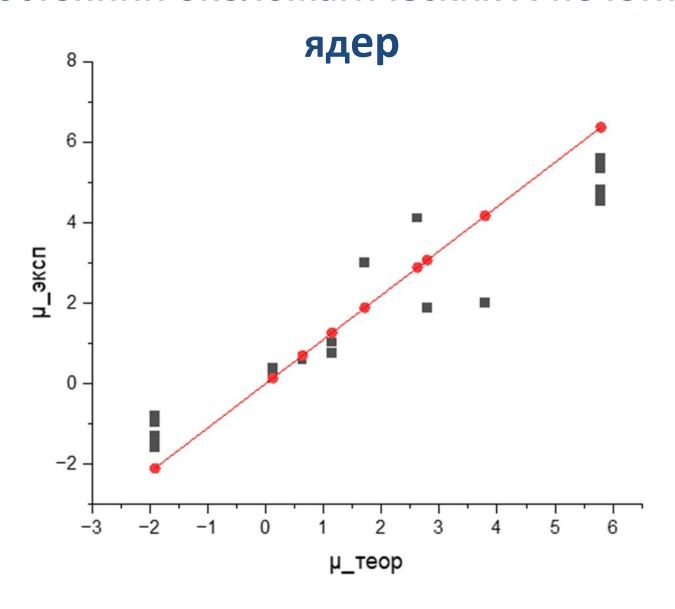
Систематика магнитных моментов основных состояний А-нечетных ядер

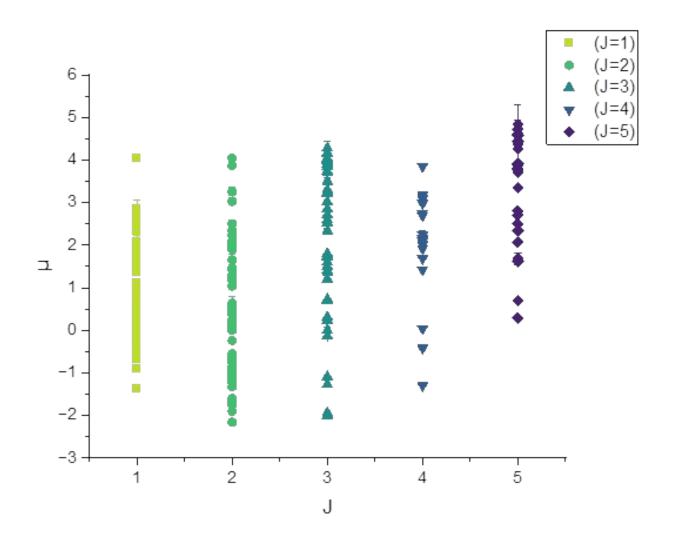


Линии Шмидта

Магнитные моменты легчайших А-нечетных ядер в основном состоянии

Ядро	Z	N	конфигураци я	СПИН		
	1	2			2.793	2.978
	2	1			-1.913	-2.127
	3	4			3.793	3.256
	3	6			3.793	3.439
	3	8			3.793	3.667
	6	7			0.638	0.702
	4	7	!		-1.913	-1.681
	5	6			3.793	2.688
	5	8			3.793	3.178

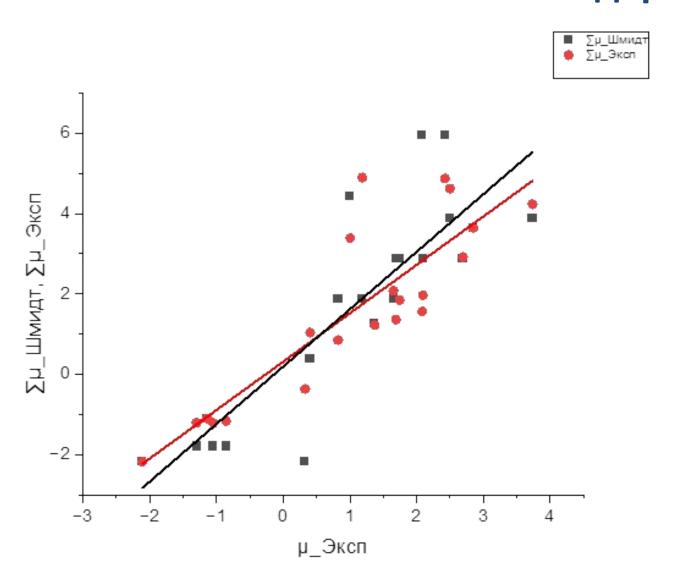

Сравнение магнитных моментов основных состояний легких (Z≤11) А-нечетных ядер


Магнитные моменты основных состояний А-нечетных околомагических ядер

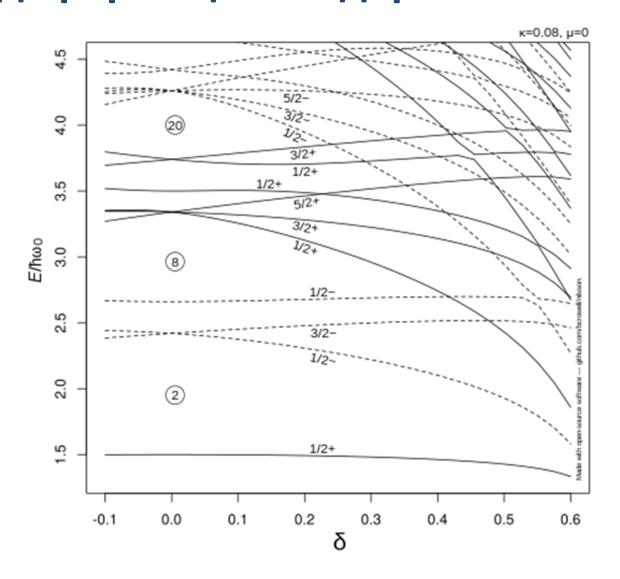
Ядро	Z	N	Конфигурация	спин		
	7	8			2.793	2.978
	8	7			0.638	0.719
	8	9			-1.913	-1.893
	9	8			4.793	4.722
	19	20			0.124	0.391
	20	19			1.148	1.021
	20	21			-1.913	-1.594
	21	20			5.793	5.430
	81	126			2.793	1.876
	82	125			0.638	0.593
	83	126			2.624	4.11

Сравнение магнитных моментов основных состояний околомагических А-нечетных

Магнитные моменты основных состояний нечетно-нечетных ядер


Магнитные моменты легких нечетно-нечетных ядер

		Магнитные моменты, Спины состояний						
Н	Јуклиды	«расчет»	«эксперимент»	эксперимент				
2H	1H x n	2.793-1.913=0.880 (1/2+)+(1/2+)=1+	2.793-1.913=0.880 (1/2+)+(1/2+)=1+	0.857 1+				
6Li	3H x 3He	3.793-1.913=1.880 (3/2-)+(3/2-)=3+	2.973-2.128=0.851 (1/2+)+(1/2+)=1+	0.822 1+				
8Li	7Li x 9Be	3.793-1.913=1.880 (3/2-)+(3/2-)=3+	3.256-1.177=2.079 (3/2-)+(3/2-)=3+	1.654 2+				
8B	7B x 9C	3.793-1.913=1.880 (3/2-)+(3/2-)=3+	нет данных	1.036 2+				
10B	9B x 11C	3.793-1.913=1.880 (3/2-)+(3/2-)=3+	нет данных	1.800 3+				
14N	13N x 15O	-0.264+0.638=0.374 (1/2-)+(1/2-)=1+	0.322+0.719=1.041 (1/2-)+(1/2-)=1+	0.404 1+				
16N	15N x 17O	-0.264-1.913=-2.177 (1/2-)+(5/2+)=3-	-0.283-1.894=-2.177 (1/2-)+(5/2+)=3-	-2.11 1-				
20F	19F x 21Ne	4.793-1.913=2.880 (5/2+)+(5/2+)=5+	2.628-0.662=1.967 (1/2+)+(3/2+)=2+	2.093 2+				


Магнитные моменты околомагических нечетно-нечетных ядер

		Магнитные моменты, Спины состояний					
Н	уклиды	«расчет»	«эксперимент»	эксперимент			
38K	37K x 39Ca	0.124+1.148=1.272 (3/2+)+(3/2+)=3+	0.203+1.022=1.225 (3/2+)+(3/2+)=3+	1.371 3+			
40K	39K x 41Ca	0.124-1.913=-1.789 (3/2+)+(7/2-)=5-	0.391-1.595=-1.204 (3/2+)+(7/2-)=5-	-1.298 4-			
42K	41K x 43Ca	0.124-1.913=-1.789 (3/2+)+(7/2-)=5-	0.215-1.317=-1.102 (3/2+)+(7/2-)=5-	-1.139 2-			
44K	43K x 45Ca	0.124-1.913=-1.789 (3/2+)+(7/2-)=5-	0.163-1.327=-1.164 (3/2+)+(7/2-)=5-	-0.856 2-			
46K	45K x 47Ca	0.124-1.913=-1.789 (3/2+)+(7/2-)=5-	0.173-1.380=-1.207 (3/2+)+(7/2-)=5-	-1.051 2-			
46Sc	45Sc x 47Ti	5.793-1.913=3.880 (7/2-)+(7/2-)=7+	4.756-0.788=3.968 (7/2-)+(7/2-)=7+	3.03 4+			
48Sc	47Sc x 49Ti	5.793-1.913=3.880 (7/2-)+(7/2-)=7+	5.34-1.104=4.236 (7/2-)+(7/2-)=7+	3.737 6+			
50V	49V x 51Cr	5.793-1.913=3.880 (7/2-)+(7/2-)=7+	4.47-0.934=3.536 (7/2-)+(7/2-)=7+	3.346 6+			

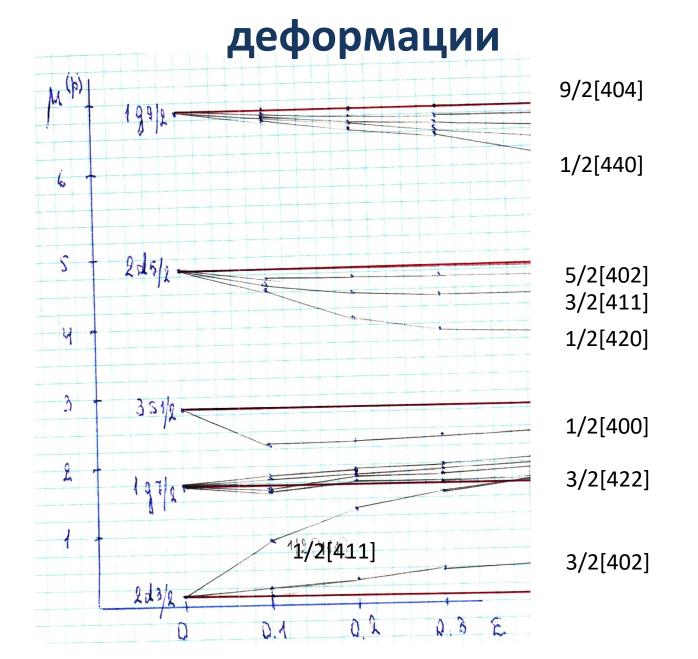
Сравнение методов вычисления магнитных моментов нечетно-нечетных ядер

Роль деформации в ядерном магнетизме

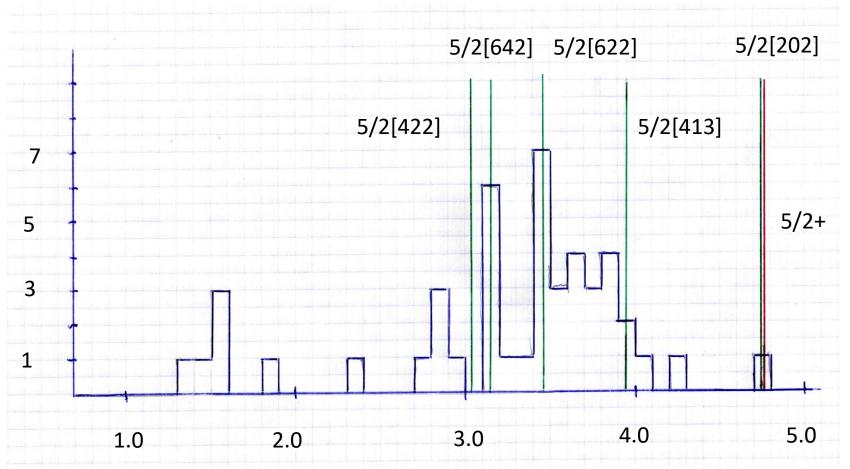
Деформация снимает вырождение по проекции углового момента

Влияние квадрупольной деформации на магнитные моменты ядерных состояний

$$\psi(\delta) = \sqrt{1 - a^{2}(\delta)} \varphi_{l} + a(\delta) \varphi_{l\pm 2}$$

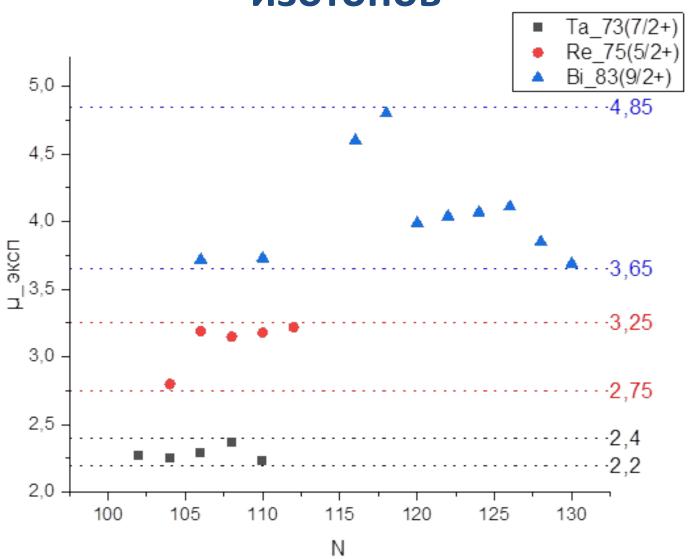

$$\mu(\delta) = (1 - a^{2}) \mu_{l} + a^{2} \mu_{l\pm 2} = \mu_{l} - a^{2} (\mu_{l} - \mu_{l\pm 2})$$

$$\downarrow 0,0$$


$$\downarrow 0,5$$

$$\downarrow 0,0$$

Зависимость магнитных моментов от



Магнитные моменты деформированных ядер

49 состояний со спином 5/2+ Расчет в потенциале Нильссона с деформацией ε=0.3

Магнитные моменты в цепочках изотопов

Результаты

- На основе файла ENSDF и компиляции Стоуна построена новая база данных ядерных магнитных моментов.
- Магнитные моменты ядер в основном состоянии систематизированы по массовому числу A, заряду Z и спину I состояния.
- Магнитные моменты легких и околомагических ядер расчитаны на основе одночастичной модели сферического ядра.
- Магнитные моменты нечетно-нечетных ядер оценены как сумма магнитных моментов соседних А-нечетных ядер. Несколько лучший результат получается при использовании экспериментальных значений магнитных моментов, что частично учитывает поляризационные эффекты.
- Квадрупольная деформация ограничивает область ядерных магнитных моментов шмидтовскими значениями.

Спасибо за внимание!

Mitropolsky_IA@pnpi.nrcki.ru