Исследование когерентного фоторождения векторных мезонов и димюонного континуума в эксперименте ALICE на LHC

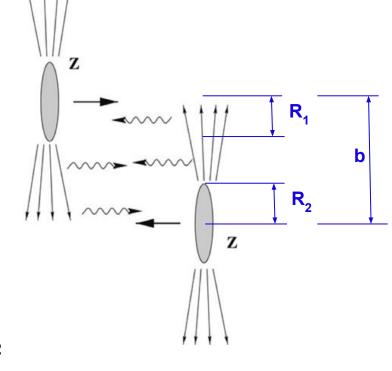
НИЦ КИ - ПИЯФ, ЛРЯФ Назар Бурмасов Ультрапериферические столкновения (УПС): b > R₁+R₂

адронные взаимодействия подавлены

Поток фотонов:

можно описать в приближении эквивалентных фотонов

 $Q < 1/R \sim 30 \text{ M}_{2}B$

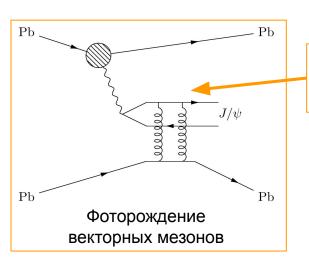

пропорционален Z²

Обзоры по физике УПС:

A.J. Baltz et al, Phys. Rept. 458 (2008) 1

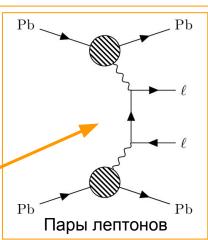
J.G. Contreras, J.D. Tapia Takaki. Int.J.Mod.Phys. A30 (2015) 1542012


S.Klein and P. Steinberg, Ann. Rev. Nuclear Part. Sci. 70 (2020) 323



Ультрапериферические столкновения на LHC можно использовать для исследования үү, үр и үРb взаимодействий при высоких энергиях

Ультрапериферические столкновения


Поиск новой физики: суперсимметрия, слабо взаимодействующие частицы, новые резонансы...

Исследование партонной плотности в ядрах при малых бьёркеновских *х*

Проверка описания сильных ЭМ полей в приближении эквивалентных фотонов

Генератор событий Upcgen СРС 277 (2022), 108388, arXiv: 2111.11383

Сечение в ультра-периферических столкновениях

$$\frac{\mathrm{d}^2 \sigma(AA \to AA + X)}{\mathrm{d} Y \, \mathrm{d} M} = \frac{\mathrm{d}^2 N_{\gamma \gamma}}{\mathrm{d} Y \, \mathrm{d} M} \sigma(\gamma \gamma \to X)$$

Двухфотонная светимость

$$\frac{\mathrm{d}^2 N_{\gamma\gamma}}{\mathrm{d}k_1 \mathrm{d}k_2} = \iint \mathrm{d}^2 b_{\gamma_1} \mathrm{d}^2 b_{\gamma_2} \, \Gamma_{AA}(b) \, N_{\gamma A}(k_1, b_{\gamma_1}) \, N_{\gamma A}(k_2, b_{\gamma_2})$$

Реалистичное моделирование вероятности отсутствия адронных взаимодействий

адронных взаимодействий
$$\Gamma_{AA}(b)=\exp\left(-\sigma_{NN}^{\rm tot}\int\mathrm{d}^2\vec{b}'\,T_A(|\vec{b}'|)\,T_A(|\vec{b}-\vec{b}'|)\right) \qquad T_A(b)=\int\mathrm{d}z\,\rho(b,z)$$

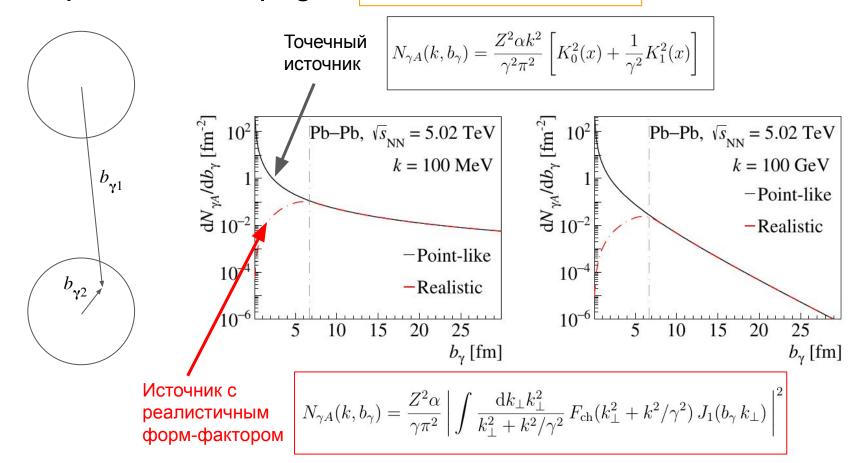
$$T_A(b) = \int \mathrm{d}z \, \rho(b, z)$$

Описание потоков фотонов

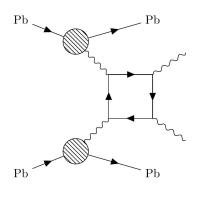
 $x = kb_{\gamma}/\gamma$

• Описание потоков фотонов
$$N_{\gamma A}(k,b_{\gamma}) = \frac{Z^2 \alpha k^2}{\gamma^2 \pi^2} \left[K_0^2(x) + \frac{1}{\gamma^2} K_1^2(x) \right] \longrightarrow N_{\gamma A}(k,b_{\gamma}) = \frac{Z^2 \alpha}{\gamma \pi^2} \left| \int \frac{\mathrm{d}k_{\perp} k_{\perp}^2}{k_{\perp}^2 + k^2/\gamma^2} \, F_{\mathrm{ch}}(k_{\perp}^2 + k^2/\gamma^2) \, J_1(b_{\gamma} \, k_{\perp}) \right|^2$$

18 *b* [fm]

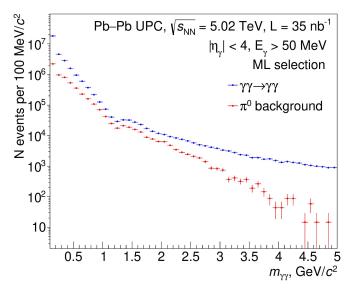

0.8

0.6


0.4

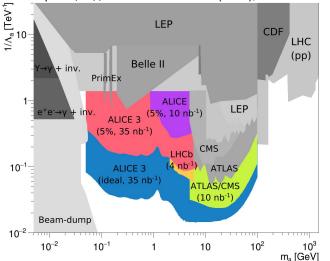
Генератор событий Upcgen

CPC 277 (2022), 108388, arXiv: 2111.11383

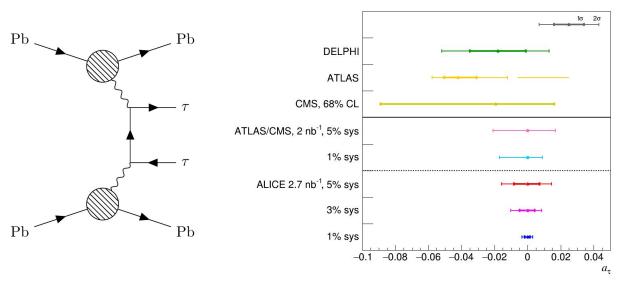

Рассеяние света на свете и поиск ALP

Рассеяние света на свете (LbyL)

Рождение аксионоподобных частиц (ALP)


Рассеяния света на свете:

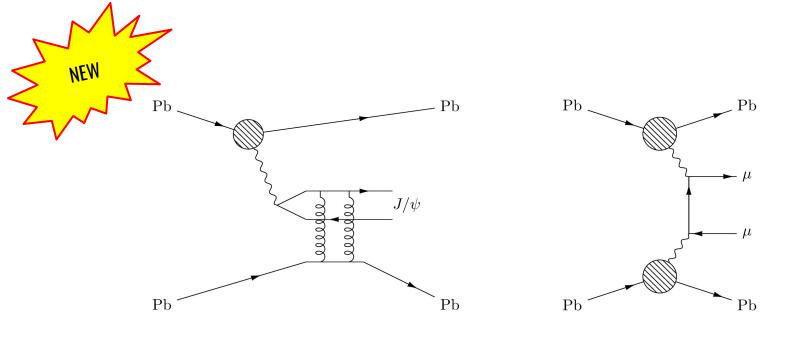
Измерения при m < 5 ГэВ/c²


Поиск ALP:

- Возможность покрыть область 50 МэВ/ c^2 5 ГэВ/ c^2
- Идеальный случай—калориметры?

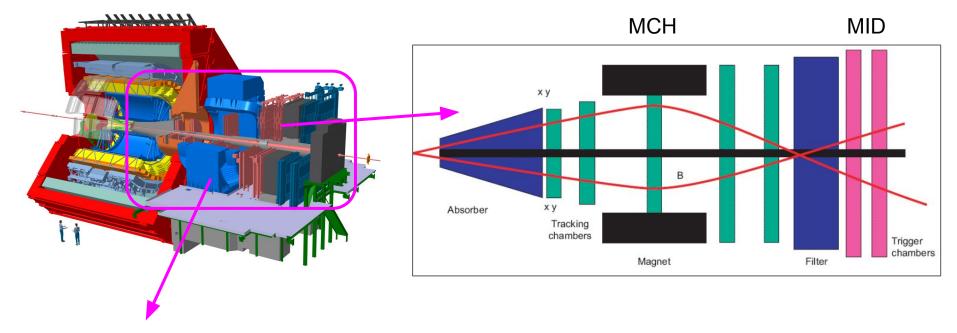
Пределы из ATLAS, JHEP 03, 243 (2021) Проекции для ATLAS/CMS из PRL 118 (2017), 171801 Проекции для LHCb из EPJC 81 (2021), 522

Рождение пар тау-лептонов


Чувствительность к рождению суперсимметричных частиц зависит от массы лептона

 \succ τ в ~280 раз более чувствителен к новой физике чем μ

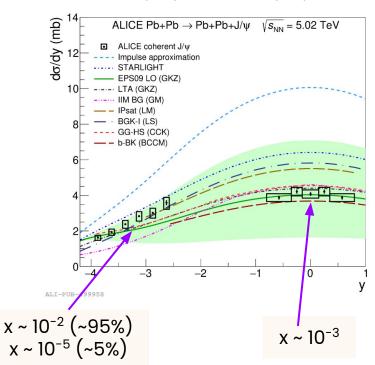
Возможные отклонения магнитных моментов могут указывать на составную природу лептонов

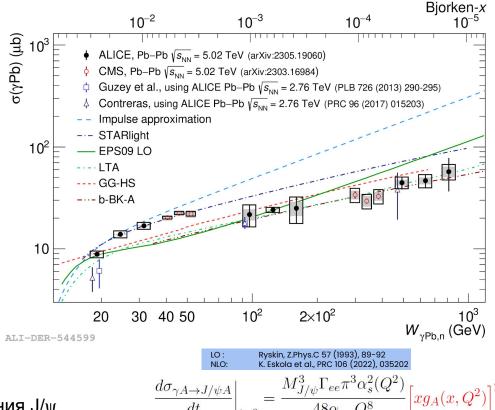

➤ Пример — g-2 нейтрона и протона

Возможность улучшить пределы в ~2 раза по сравнению с результатами DELPHI

Фоторождение векторных мезонов и димюонного континуума в Run 3

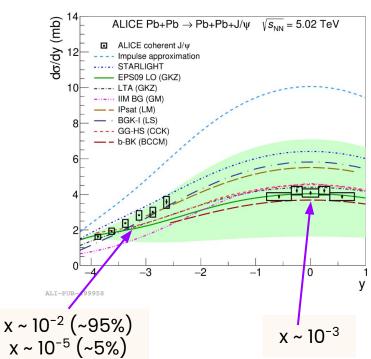
Мюонный спектрометр ALICE

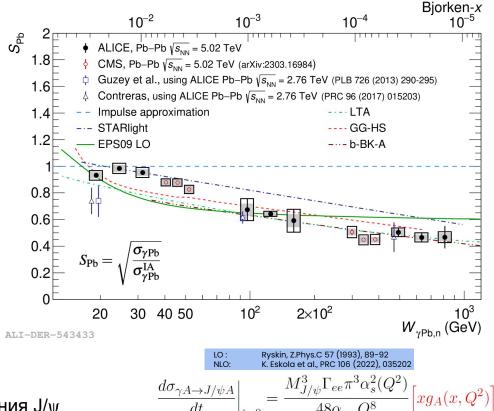



- Покрытие по псевдобыстроте: $-4 < \eta < -2.5$
- Абсорбер фильтрация частиц
- Muon CHambers трековый детектор → реконструкция импульса мюонов
- Muon IDentifer мюонный триггер → временное разрешение ~ 1 BC*

Фоторождение J/ ψ в Run 2

ALICE, JHEP 10 (2023) 119 CMS, PRL 131 (2023) 262301

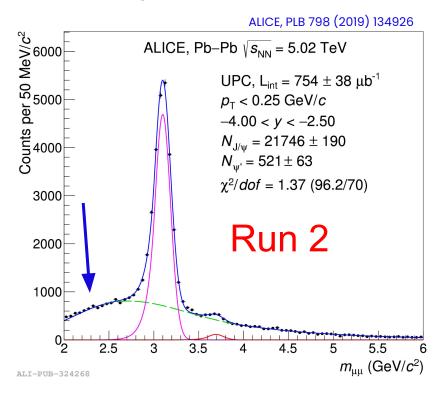


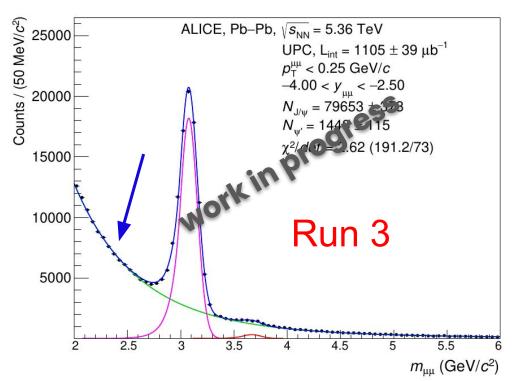

- Измерено сечение когерентного фоторождения J/ψ
- Извлечено фотоядерное сечение при рекордно малых бьёркеновских х

Фоторождение J/ ψ в Run 2

ALICE, JHEP 10 (2023) 119 CMS, PRL 131 (2023) 262301

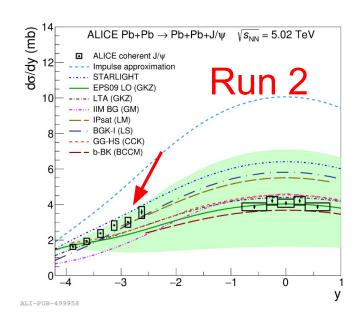
ALICE, PLB 798 (2019) 134926, PLB 817 (2021) 136280

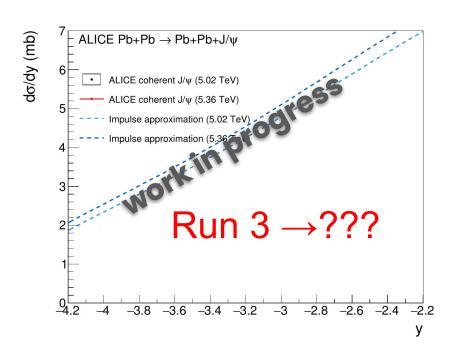

Измерено сечение когерентного фоторождения J/ψ


• Извлечено фотоядерное сечение при рекордно малых бьёркеновских х

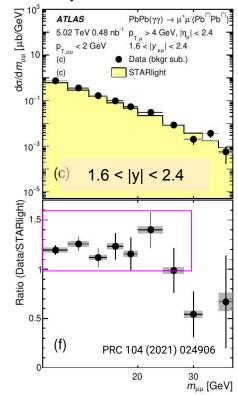
• Извлечен фактор ядерного подавления $S_{
m ph}$

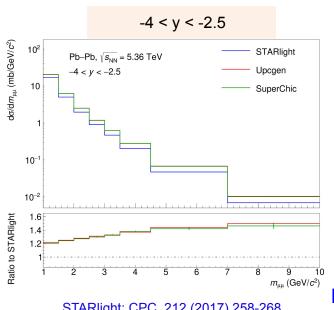
Disentangling: Guzey, Strikman, Zhalov, EPJC 74 (2014) 7, 2942 EPS09 LO, LTA: Guzey, Kryshen, Zhalov, PRC 93 (2016) 055206


Мотивация



- Бестриггерный набор данных дает возможность продвинуться в область малых масс
- Нет эффектов, связанных с резким изменением эффективности в области Ј/ψ

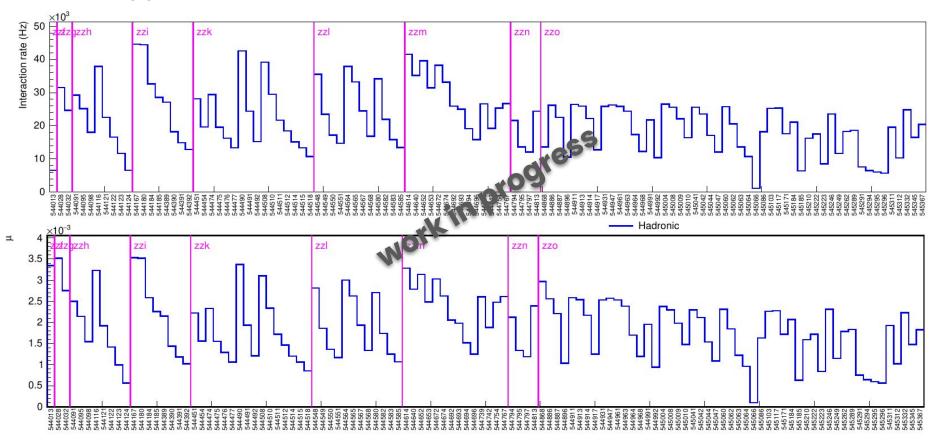

Мотивация



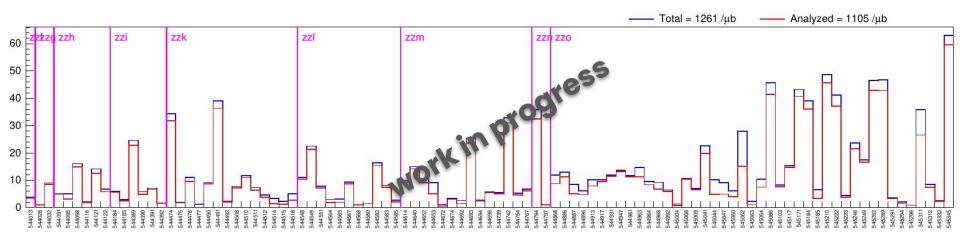
- Бестриггерный набор данных дает возможность продвинуться в область малых масс
- Нет эффектов, связанных с резким изменением эффективности в области Ј/ψ
- Более точное измерение сечения \rightarrow проверка тренда при -3 < y < -2.5

Мотивация

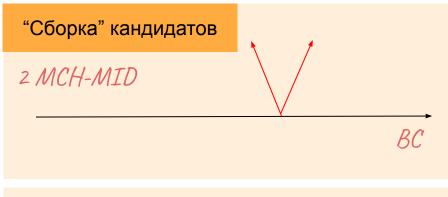
STARlight: CPC, 212 (2017) 258-268 Upcgen: CPC, 277 (2022) 108388 SuperChic: EPJC, 80 (2020) 925


• STARlight: точечный источник, жесткий кат при $b_{\gamma} = R_{A}$

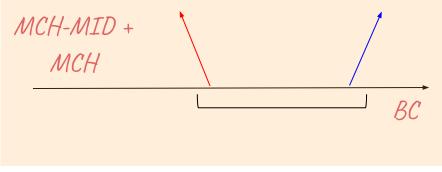
- SuperChic, Upcgen: реалистичный форм-фактор
- Заметные отличия при больших быстротах

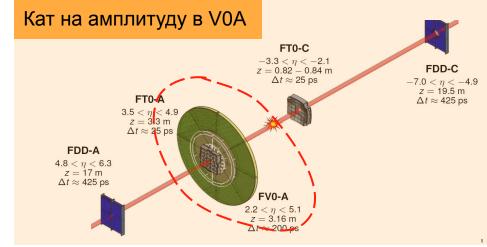


Анализ данных

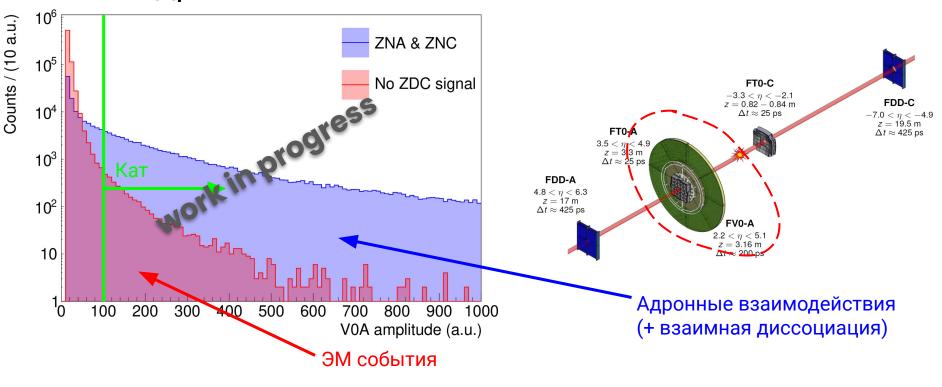

116 ранов из октябрьского сеанса с малым пайл-апом

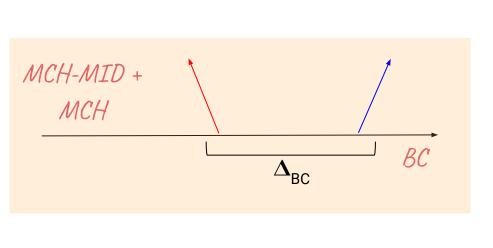
Анализ данных

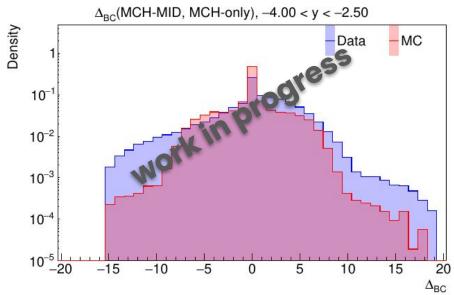



- > После QC → 99 ранов с суммарной интегральной светимостью ~1.1 нбн⁻¹
- ightharpoonup Референсное сечение для расчета светимости $ightharpoonup L = rac{N_{
 m ref}}{\sigma_{
 m ref}} P_{
 m ref}$
 - ightarrow Учет пайл-апа $ightarrow P_{
 m ref} = rac{\mu_{
 m ref}}{1-\exp^{-\mu_{
 m ref}}}$

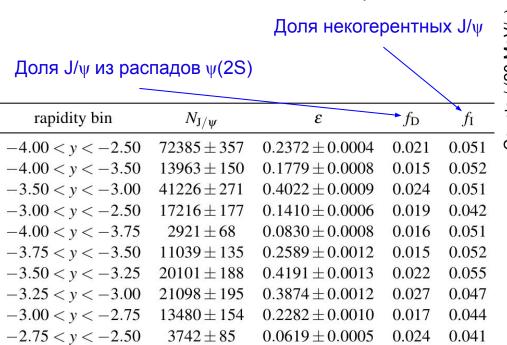
Отбор событий

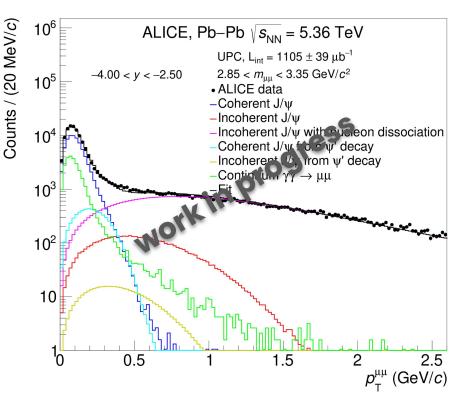




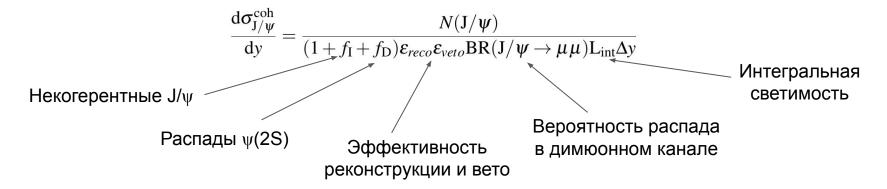

Вето на адронные события в V0A

- Кат A(V0A) < 100 эффективно подавляет адронные столкновения
- Эффективность вето (вероятность оставить УПС событие) > 99%

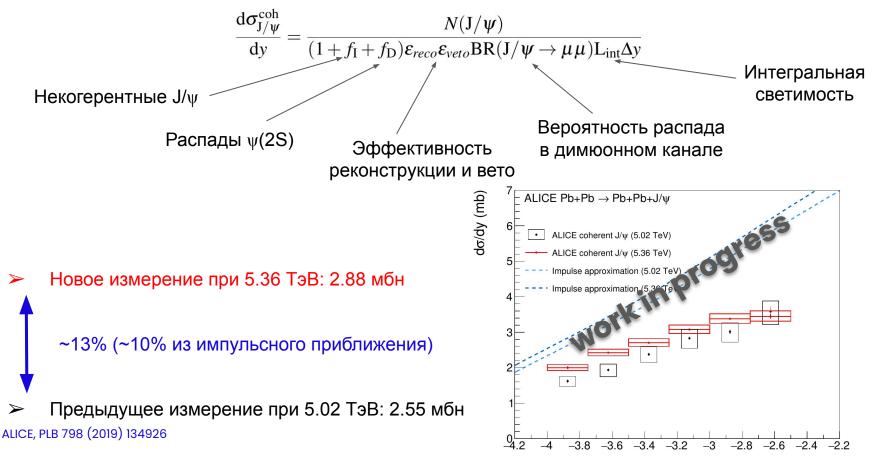

Мэтчинг MCH-MID и MCH треков


- Характерное временное окно для считывания в MCH ~40 BC
- ullet Оптимальное окно для мэтчинга $\Delta_{_{
 m BC}} \sim$ 8 BC

Выход когерентного Ј/ψ



- Upcgen: фит димюонного континуума
- Параметризация Н1: описание некогерентного J/ψ с диссоциацией

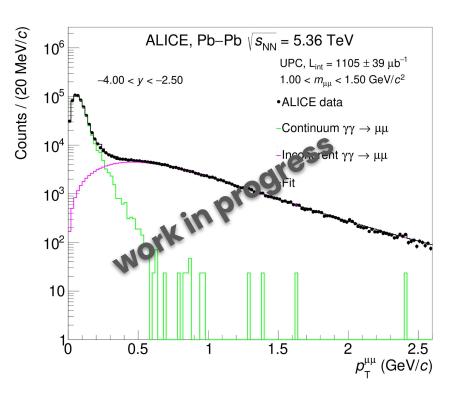

$$\frac{\mathrm{d}N}{\mathrm{d}p_\mathrm{T}} \sim p_\mathrm{T} \left(1 + \frac{b_\mathrm{pd}}{n_\mathrm{pd}} p_\mathrm{T}^2 \right)^{-n_\mathrm{pd}}$$

Сечение когерентного Ј/ψ

rapidity bin	$N_{ m J/\psi}$	ε	f_{D}	$f_{ m I}$	$d\sigma/dy$ (mb)
-4.00 < y < -2.50	72385 ± 357	0.2372 ± 0.0004	0.021	0.651	$2.88 \pm 0.015 \text{ (stat.)}^{+0.12}_{-0.11} \text{ (syst.)}$
-4.00 < y < -3.50	13963 ± 150	0.1779 ± 0.0008	0.015	6.052	$2.23 \pm 0.026 \text{ (stat.)}_{-0.082}^{+0.089} \text{ (syst.)}$
-3.50 < y < -3.00	41226 ± 271	0.4022 ± 0.0009	6CF	0.051	$2.89 \pm 0.02 \text{ (stat.)}_{-0.11}^{+0.12} \text{ (syst.)}$
-3.00 < y < -2.50	17216 ± 177	0.1410 ± 0.0006	0.019	0.042	$3.5 \pm 0.038 \text{ (stat.)}_{-0.13}^{+0.15} \text{ (syst.)}$
-4.00 < y < -3.75	2921 ± 68	0.0830 ± 0.0008	0.016	0.051	$2.0 \pm 0.051 \text{ (stat.)}^{+0.084}_{-0.077} \text{ (syst.)}$
-3.75 < y < -3.50	11039 ± 135	0.2531 ± 0.0012	0.015	0.052	$2.43 \pm 0.032 \text{ (stat.)}_{-0.089}^{+0.098} \text{ (syst.)}$
-3.50 < y < -3.25	20101 ± 188	0.4191 ± 0.0013	0.022	0.055	$2.7 \pm 0.027 \text{ (stat.)}_{-0.1}^{+0.11} \text{ (syst.)}$
-3.25 < y < -3.00	21098 ± 195	0.3874 ± 0.0012	0.027	0.047	$3.08 \pm 0.03 \text{ (stat.)}^{+0.13}_{-0.12} \text{ (syst.)}$
-3.00 < y < -2.75	13480 ± 154	0.2282 ± 0.0010	0.017	0.044	$3.38 \pm 0.041 \text{ (stat.)}_{-0.13}^{+0.14} \text{ (syst.)}$
-2.75 < y < -2.50	3742 ± 85	0.0619 ± 0.0005	0.024	0.041	$3.44 \pm 0.083 \text{ (stat.)}_{-0.13}^{+0.16} \text{ (syst.)}$

Сечение когерентного Ј/ψ

Систематические погрешности


	MCH-MID matching	BC window	Veto	p_{T} cut	Mass interval	$p \times DCA$ cut	p_{T} shape	Luminosity	Branching	Total
(-4.00, -2.50)	$^{+0.95}_{-0.0}$	$^{+0.62}_{-0.43}$	$^{+1.2}_{-0.72}$	+0.59 -0.12	$^{+0.0014}_{-0.61}$	$^{+0.0}_{-0.3}$	$^{+1.1}_{-0.57}$	+3.5 -3.5	$^{+0.5}_{-0.5}$	$^{+4.1}_{-3.7}$
(-4.00, -3.50)	$^{+0.074}_{-0.0}$	$^{+1.1}_{-0.76}$	$^{+0.91}_{-0.47}$	$^{+0.85}_{-0.24}$	$^{+0.0}_{-0.37}$	$^{+0.018}_{-0.12}$	$^{+0.63}_{-0.26}$	$+3.5 \\ -3.5$	$^{+0.5}_{-0.5}$	$^{+4.0}_{-3.7}$
(-3.50, -3.00)	$^{+1.0}_{-0.0}$	$^{+0.49}_{-0.36}$	$^{+1.3}_{-0.81}$	$^{+0.49}_{-0.12}$	$+0.0043 \\ -0.64$	$^{+0.047}_{-0.35}$	+0.97 5 0.54	$^{+3.5}_{-3.5}$	$^{+0.5}_{-0.5}$	$^{+4.1}_{-3.8}$
(-3.00, -2.50)	$^{+1.5}_{-0.0}$	$^{+0.39}_{-0.18}$	$^{+1.2}_{-0.7}$	$^{+0.86}_{-0.023}$	$^{+0.027}_{-0.77}$	+0.01	$^{+0.84}_{-0.75}$	+3.5 -3.5	$^{+0.5}_{-0.5}$	$^{+4.2}_{-3.8}$
(-4.00, -3.75)	$^{+0.0}_{-1.0}$	$^{+1.5}_{-0.95}$	$^{+0.78}_{-0.4}$	$^{+1.4}_{-0.068}$	$^{+0.065}_{-0.3}$	$^{+0.029}_{-0.1}$	$^{+0.57}_{-0.18}$	$+3.5 \\ -3.5$	$^{+0.5}_{-0.5}$	$^{+4.2}_{-3.8}$
(-3.75, -3.50)	$^{+0.54}_{-0.0}$	$^{+1.0}_{-0.71}$	$^{+0.94}_{-0.51}$	+1.10	$^{+0.0}_{-0.37}$	$^{+0.019}_{-0.12}$	$^{+0.65}_{-0.28}$	$^{+3.5}_{-3.5}$	$^{+0.5}_{-0.5}$	$^{+4.1}_{-3.7}$
(-3.50, -3.25)	$^{+1.6}_{-0.0}$	$^{+0.51}_{-0.37}$	$^{+1.1}_{-0.8}$	$^{+0.31}_{-0.38}$	$^{+0.0018}_{-0.68}$	$^{+0.051}_{-0.31}$	$^{+0.9}_{-0.46}$	+3.5 -3.5	$^{+0.5}_{-0.5}$	$^{+4.2}_{-3.8}$
(-3.25, -3.00)	$^{+0.55}_{-0.0}$	$^{+0.53}_{-0.33}$	$^{+1.4}_{-0.81}$	$^{+0.74}_{-0.14}$	$^{+0.0}_{-0.61}$	$^{+0.03}_{-0.39}$	$^{+1.0}_{-0.62}$	+3.5 -3.5	$^{+0.5}_{-0.5}$	$^{+4.1}_{-3.8}$
(-3.00, -2.75)	$^{+1.3}_{-0.0}$	$^{+0.31}_{-0.29}$	$^{+1.2}_{-0.68}$	$^{+0.59}_{-0.18}$	$^{+0.036}_{-0.67}$	$^{+0.0063}_{-0.31}$	$^{+1.1}_{-0.87}$	+3.5 -3.5	$^{+0.5}_{-0.5}$	$^{+4.2}_{-3.8}$
(-2.75, -2.50)	$^{+2.1}_{-0.0}$	$^{+0.71}_{-0.16}$	$^{+1.2}_{-0.74}$	$^{+1.2}_{-0.32}$	$^{+0.0}_{-1.2}$	$^{+0.18}_{-0.25}$	$^{+0.92}_{-0.57}$	$+3.5 \\ -3.5$	$^{+0.5}_{-0.5}$	$^{+4.6}_{-3.9}$

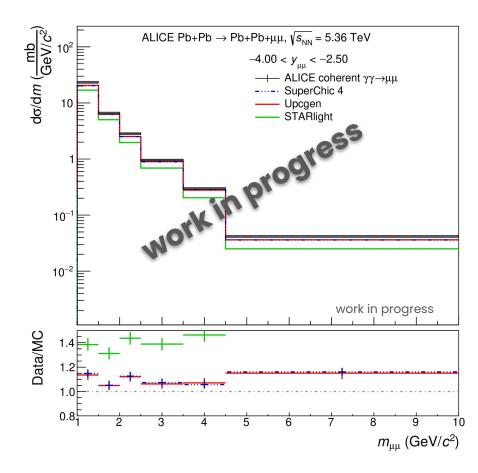
Выход когерентного $\gamma\gamma \rightarrow \mu\mu$

Доля некогерентных $\mu\mu$ + фон

mass range (GeV)	$N_{\gamma\gamma o\mu\mu}$	ε	f_{I}
1.00 < m < 1.50	595324 ± 772	0.0489 ± 0.0002	0.045
1.50 < m < 2.00	217342 ± 466	0.0585 ± 0.0004	0.023
2.00 < m < 2.50	89607 ± 299	0.0562 ± 0.0001	0.025
2.50 < m < 3.50	62384 ± 250	0.0580 ± 0.0001	0.021
3.50 < m < 4.50	17318 ± 132	0.0517 ± 0.0001	0.021
4.50 < m < 10.00	10832 ± 104	0.0423 ± 0.00003	0.017

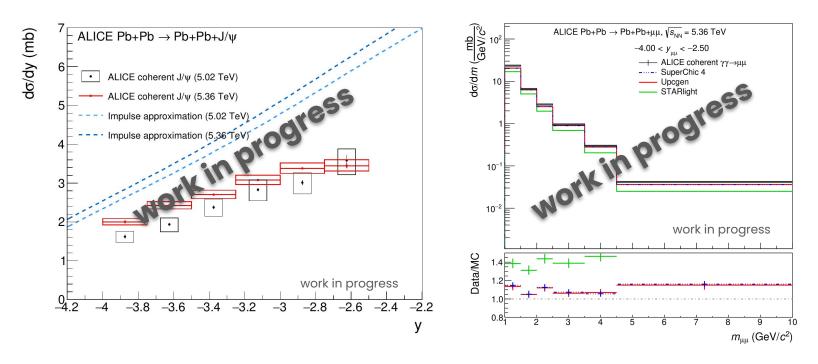
- Upcgen: фит димюонного континуума
- Параметризация Н1: описание некогерентного рождения + фона

$$rac{\mathrm{d}N}{\mathrm{d}p_\mathrm{T}} \sim p_\mathrm{T} \left(1 + rac{b_\mathrm{pd}}{n_\mathrm{pd}} p_\mathrm{T}^2
ight)^{-n_\mathrm{pd}}$$


Сечение когерентного $\gamma\gamma \rightarrow \mu\mu$

Сечение когерентного $\gamma\gamma \rightarrow \mu\mu$

$$-4 < y < -2.5$$


mass range (GeV)	$d\sigma/dm$ (mb/GeV)
1.00 < m < 1.50	$21.13 \pm 0.11 \text{ (stat.)}_{-1.4}^{+0.76} \text{ (syst.)}$
1.50 < m < 2.00	$6.58 \pm 0.04 \text{ (stat.)}_{-0.45}^{+0.25} \text{ (syst.)}$
2.00 < m < 2.50	$2.82 \pm 0.01 \text{ (stat.)}_{-0.21}^{+0.1} \text{ (syst.)}$
2.50 < m < 3.50	$0.955 \pm 0.004 \text{ (stat.)}_{-0.07}^{+0.036} \text{ (syst.)}$
3.50 < m < 4.50	$0.297 \pm 0.002 \text{ (stat.)}_{-0.02}^{+0.011} \text{ (syst.)}$
4.50 < m < 10.00	$0.0415 \pm 0.0004 \text{ (stat.)}_{-0.0035}^{+0.0016} \text{ (syst.)}$

Систематические погрешности

Mass range (GeV/c ²)	MCH-MID matching	BC window	Veto	p_{T} cut	$p \times DCA$ cut	Luminosity	Total
(1.00, 1.50)	$^{+1.0}_{0.0}$	$^{+1.1}_{-0.54}$	$+0.48 \\ -0.3$	$^{+0.17}_{-0.12}$	$^{+0.31}_{-0.16}$	+3.5 -3.5	$+3.9 \\ -3.6$
(1.50, 2.00)	$^{+1.0}_{0.0}$	$^{+1.0}_{-0.82}$	$+0.52 \\ -0.36$	+0.78 -0.23	$+0.24 \\ -0.14$	+3.5 -3.5	$+3.9 \\ -3.6$
(2.00, 2.50)	$^{+0.0}_{-0.062}$	+0.86 -0.59	$^{+0.58}_{-0.30}$	0.051 -0.00068	$^{+0.0}_{-0.12}$	+3.5 -3.5	$+3.6 \\ -3.6$
(2.50, 3.50)	$^{+0.0}_{-0.29}$	+0.7314	$^{+0.61}_{-0.38}$	$^{+0.51}_{-0.86}$	$^{+0.0}_{-0.16}$	+3.5 -3.5	$+3.7 \\ -3.7$
(3.50, 4.50)	$^{+0.0}_{-0.46}$	$+0.55 \\ -0.64$	$^{+0.66}_{-0.38}$	$^{+0.2}_{-0.89}$	$^{+0.014}_{-0.37}$	+3.5 -3.5	$^{+3.6}_{-3.7}$
(4.50, 10.00)	$^{+0.0}_{-0.57}$	$^{+0.41}_{-0.39}$	$+0.86 \\ -0.39$	$^{+0.62}_{-2.0}$	$^{+0.21}_{-1.3}$	+3.5 -3.5	+3.7 -4.3

Заключение и планы

 Run 3 дает возможность расширить и углубить предыдущие измерения векторных мезонов и впервые провести измерение димюонного континуума в мюонном спектрометре

Доклады

- Ядро-2020, Санкт-Петербург, "Central Diffraction and Ultra-Peripheral Collisions in ALICE in Run 3 and 4"
- Ядро-2021, Санкт-Петербург, "Feasibility studies of tau-lepton anomalous magnetic moment measurements with ultra-peripheral collisions at the LHC"
- Ядро-2022, МГУ, Россия, "Searches for new physics with ultra-peripheral collisions at the LHC"
- PhysicA.SPb, 2022, Санкт-Петербург, Россия, "Prospects of light-by-light scattering measurements and axion-like particle searches at the LHC"
- International Conference on New Frontiers in Physics, 2022, Крит, Греция, Perspectives of tau g-2 measurements with ALICE
- Ломоносовская конференция по физике элементарных частиц, 2023, МГУ, Россия, Results and prospects of two-photon interaction studies with the ALICE experiment at the LHC
- Научная сессия секции ядерной физики ОФН РАН, 2024, Дубна, Россия, Исследование фотонфотонных и фотон-ядерных взаимодействий в ультрапериферических столкновениях ядер на коллайдере LHC
- 42nd International Conference on High Energy Physics, 2024, Прага, Чехия, Quarkonia photoproduction and dilepton production in UPCs with ALICE

Публикации и препринты

- N. Burmasov, Central Diffraction and Ultra-Peripheral Collisions in ALICE in Run 3 and 4, Phys.Part.Nucl. 53
 (2022) 2, 297-302
- N. Burmasov, E. Kryshen, P. Bühler, R. Lavička, Feasibility Studies of Tau-Lepton Anomalous Magnetic Moment Measurements in Ultraperipheral Collisions at the LHC, Phys.Part.Nucl. 54 (2023) 4, 590-594
- P. Bühler, N. Burmasov, R. Lavička, E. Kryshen, EPJ Web Conf. 262 (2022), 01021
- N. Burmasov, E. Kryshen, P. Bühler, R. Lavička, Feasibility of tau g-2 measurements in ultra-peripheral collisions of heavy ions, arXiv: 2203.00990
- D. d'Enterria, ..., N. Burmasov, E. Kryshen, ... et al., "Opportunities for new physics searches with heavy ions at colliders", J.Phys.G 50 (2023) 5, 050501, arXiv: 2203.05939 [Q1, 30 цитирований без самоцитат]
- ALICE 3 Letter of Intent, CERN CDS: LHCC-I-038
- N. Burmasov, E. Kryshen, P. Bühler, R. Lavička, Comput.Phys.Commun. 277 (2022), 108388, arXiv:
 2111.11383 [Q1, 7 цитирований без самоцитат]
- N. Burmasov, Search for New Physics in Ultraperipheral Collisions at the Large Hadron Collider, Phys.Atom.Nucl. 85 (2022) 6, 942-950
- N. Burmasov, Prospects of light-by-light scattering measurements and axion-like particle searches at the LHC, St.Petersburg Polytech.Univ.J.Phys.Math. 16 (2023) 1.2, 308-314