

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Результаты десятилетней работы эксперимента NOVA

Самойлов О.Б. (ЛЯП ОИЯИ)

Семинар ОФВЭ, 19 ноября 2024

Текущие ускорительные нейтринные эксперименты с длинной базой: T2K и NOvA

T2K

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

• Нейтринный пучок J-PARC (Токай)

- Водный черенковский детектор Super-Kamiokande
- О База осцилляции 295 км
- Набор статистики с 2009 года (до 2027)
 <u>NOvA</u>
- Ускорительный комплекс NuMI (Лаборатория им. Э.Ферми)
- Жидкий сегментированный сцинтилляционный детектор
- О База осцилляции 810 км
- Набор статистики с 2014 года (до 2027)

Нейтрино

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

- Одна из фундаментальных частиц. Изучение её свойств.
- Возникновение Вселенной.
 Большой взрыв.
- Возможное объяснение барионной асимметрии во Вселенной.
- О Практическое применение.

Объединенный институт ядерных исследований

- 1988 : Leon M. Lederman, Melvin Schwartz and Jack Steinberger за открытие мюонного нейтрино.
- 1995 : Frederick Reines за регистрацию электронных антинейтрино от реактора.
- O 2002 : Raymond Davis, Jr. и Masatoshi Koshiba за наблюдение сверхновой SN 1987A.
- 2015 : Takaaki Kajita и Arthur B. McDonald за экспериментальное подтверждение осцилляций нейтрино.

• Также премия Breakthrough 2016, включая эксперименты с участием сотрудников ОИЯИ.

Осцилляции нейтрино

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

$$\begin{vmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{vmatrix} = \begin{pmatrix} 1 & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & & s_{13}e^{-i\delta} \\ & 1 & & \\ & -s_{13}e^{i\delta} & & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ & -s_{12} & c_{12} \\ & & & 1 \end{pmatrix} \begin{vmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$\begin{split} |\Delta m_{32}^2| &= |m_3^2 - m_2^2| \\ \simeq 2.5 \times 10^{-3} \text{ eV}^2 \end{split} \qquad \begin{aligned} \Delta m_{31}^2 &\simeq \Delta m_{32}^2 \\ \nu_\mu &\to \nu_\mu & \nu_e \to \nu_e \\ \nu_\mu &\to \nu_\tau & \nu_\mu \to \nu_e \end{split}$$

 $\Delta m_{21}^2 = |m_2^2 - m_1^2|$ $\simeq 7.5 \times 10^{-5} \text{ eV}^2$ $\nu_e \to \nu_e$ $\nu_e \to \nu_\mu, \nu_\tau$

Эксперименты атмосферные и с длинной базой

Эксперименты реакторные и с длинной базой Эксперименты солнечные и реакторные Текущие ускорительные нейтринные эксперименты с длинной базой: T2K и NOvA

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

NOvA Preliminary

Семинар ОФВЭ, 19 ноября 2024

Самойлов О.Б.

Эксперимент NOvA

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

The NuMI Off-Axis ν_e Appearance Experiment

K. ENGMAN / SCIENCE 345, 6204

Семинар ОФВЭ, 19 ноября 2024

Самойлов О.Б.

NOvA. Группа ОИЯИ

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

- О Осцилляционный анализ.
- О Сечения нейтрино в рамках модели сотрудников ЛТФ.
- "Экзотическая" физика: детектирование нейтронного сигнала от Сверхновых, поиск магнитных монополей, атмосферные и космические потоки частиц и сигналы, темная материя.
- ROC-Dubna. Первый неамериканский центр удаленного управления NOvA. Работает с 2015 г.
- Развитая вычислительная инфраструктура МИВК. Облачные ресурсы.
- Два тестовых стенда для измерений характеристик электроники и жидкого сцинтиллятора NOvA.
- 12 авторов в настоящий момент. Участие в задачах координации физических анализов, менеджмент онлайн (триггеры) и оффлайн (анализ данных) программного обеспечения, экспертное участие в процессе управления работой детекторов.
- Защищены 2 кандидатских диссертации.

Источники нейтрино

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

 Естественные: Солнце, атмосфера Земли, радиоактивные изотопы, взрывы Сверхновых, диффузные потоки древних Сверхновых и реликтовые нейтрино

 Искусственные: ядерные реакторы, ускорители частиц, радиоактивные изотопы

Ускорительный нейтринный пучок

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

- Нейтрино рождаются в Главном инжекторе NuMI протонов с энергией 120 ГэВ, которые направляются на углеродную мишень.
- О После мишени установлены магнитные горны, которые фокусируют положительно или отрицательно заряженные мезоны в зависимости от режима (нейтрино или антинейтрино).
- Эти пионы и каоны распадаются, образуя (анти)нейтрино, проходя через распадный канал.
- O Модернизация ускорительного комплекса Fermilab

- Проектная мощность протонного пучка для NOvA была 700 кВт; недавние обновления на 900 кВт.
- Средняя мощность пучка сейчас 850 кВт, а летом 2024 Года достигнут рекорд 1018 кВт.
- Экспозиция последнего анализа NOvA с 26,61x10^20 POT (нейтринный пучок) и 12,5x10^20 POT (антинейтринный пучок).

Схема работы с двумя детекторами 📠

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

- Ближний детектор
- расположен в 1 км после пучковой мишени, вес 300 тонн.
- выполняет роль монитора и измеряет неосцилляционный спектр пучка
- данные БД используются для предсказания числа событий в ДД (процедура экстраполяции)

- Дальний детектор
- расположен на расстоянии 810 км от пучковой мишени, вес 14 кт.
- измеряет осцилляционный нейтринный пучок
- учитывает систематические погрешности экстраполяции из БД
- ⇒ ДД идентичен БД

Семинар ОФВЭ, 19 ноября 2024

Самойлов О.Б.

Детекторы NOvA

- * ПВХ экструзия, TiO2 и жидкий сцинтиллятор
- минеральное масло + 5% псевдокумола.
- * Считывание сигнала через светосмещающее оптоволокно на ЛФД.
- ⇒ ДД состоит из ~344,000 каналов.

3.87 cm

- среднее значение фотоэлектронов от мюонов, пересекающих дальний край, составляет ~40.
- Плоскости детектора расположены ортогонально и чередуются между собой.

Extrusion

3.87_{cm}

15.6m

Плоскость вертикальных ячеек

12

Плоскость горизонтальных ячеек

Нейтринные взаимодействия

Отбор событий при помощи CVN

- * Для идентификации событий используется свёрточная нейронная сеть CVN (Convolutional Visual Network).
- * Техника основана на алгоритмах GoogLeNet (компьютерное зрение и машинное обучение).
- Классификатор по нескольким меткам та же сеть, которая использовалась в нескольких анализах: ν_e, ν_µ, атмосферные мюоны, нейтральные токи, ...
- A. Aurisano et. al, JINST 11, P09001 (2016)

Предсказание событий в ДД

Данные БД для *v*_µ (разделены по разрешению)

Данные БД для ν_e (только фон)

Результат 2020 ν_{μ} в дальнем детекторе

4.2

2.1 2.1

730

17

Суммарный фон

➡ ПVЧОК

➡ атмосферные мюоны

Предсказание без осцилляций

Суммарный фон	2.2
➡ атмосферные мюоны	0.8
➡ пучок	1.4
Предсказание без осцилляций	476

102

96

Результат 2020 ν_e в дальнем детекторе

ν _е кандидаты в данных	58
Наилучшее предсказание	59
Суммарный фон	15.0
➡ атмосферные мюоны	3.3
➡ пучок	11.1
➡ "обратный знак" (v _e) ⁻	0.7

— v _e кандидаты в данных	27	4α
Наилучшее предсказание	27	رہ 4
Суммарный фон	10.3	Ие
➡ атмосферные мюоны	1.1	Aer
➡ пучок	7.0	
₁₈ ➡ "обратный знак" (ν _е)	2.2	Ē

Осцилляции нейтрино

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

 $\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\mu} \end{pmatrix} = \begin{pmatrix} v_{e1} & v_{e2} \\ v_{\mu} & v_{\mu} \\ v_{\mu} & v_{\mu} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \begin{pmatrix} v_1 \\ v_3 \\ v_3 \end{pmatrix}$ Fermilab 10 km Ash River 810 km Far => H=Hot Hbergroups + HNSI H=VEN' $\left| \begin{array}{c} \mathcal{N}_{e} \\ \mathcal{N}_{\mu} \\ \mathcal{N}_{\mu} \end{array} \right| = \left(\begin{array}{c} \mathcal{U}_{e1} & \mathcal{U}_{e2} & \mathcal{U}_{e3} \\ \mathcal{U}_{\mu1} & \mathcal{U}_{\mu2} & \mathcal{U}_{\mu3} \\ \mathcal{V}_{\mu} \\ \mathcal{N}_{\mu} \end{array} \right) = \left(\begin{array}{c} \mathcal{N}_{e} \\ \mathcal{N}_{\mu} \\ \mathcal{N}_{\mu} \\ \mathcal{N}_{\mu} \\ \mathcal{N}_{\mu} \\ \mathcal{N}_{\mu} \end{array} \right) = \left(\begin{array}{c} \mathcal{N}_{e1} & \mathcal{U}_{e2} & \mathcal{U}_{e3} \\ \mathcal{U}_{\mu1} & \mathcal{U}_{\mu2} & \mathcal{U}_{\mu3} \\ \mathcal{U}_{\mu3} & \mathcal{U}_{\mu3} \\ \mathcal{U$

ROC-Dubna

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Инфраструктура МИВК

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

- GRID и Cloud инфраструктура ОИЯИ поддерживает домашние задачи и распределенные ресурсы NOvA для пиковых нагрузок.
- О 39 новых серверов, добавленных в облако ОИЯИ, расширили ресурсы на ~1000 ядер ЦП и ~6 ТБ ОЗУ.
- Виртуальные машины для нового кластера и OSG-сайта.
- Возможность обработки локальных задач пользователей внутри ОИЯИ.
- Полная виртуализация компонентов Grid-сайта, впервые реализованная на Grid-сайтах ОИЯИ.
- Развитие системы хранения данных. 17 новых серверов интегрированы в облачную систему Ceph, обеспечив более 3,8 ПБ дискового пространства для хранения данных.

NOvA results: 2020 ana

Колупаева Л.Д.

results show no strong preferences.

T2K results: 2020 ana

Колупаева Л.Д.

*Preference of $3\pi/2$ value and normal MO. *No CP violation disfavored at $>2\sigma$. *Disfavour wide range of δ_{CP} values at $>3\sigma$.

Tension

- * Huge excitement due to this tension.
- * Two main hypothesis about the reasons:
 - $\ast\,$ true inverted hierarchy in Nature;
 - $\ast\,$ non-standard interactions (NSI):

$$H = \frac{1}{2E} \left[UM^2 U^{\dagger} + a \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix} \right]$$

- * $\epsilon_{\alpha\beta}$ the size of the new interaction relative to the weak interaction.
- * Longer baseline = larger NSI effect.
- * Could be due to new heavy states or light mediators.
- * But significance is small ($\sim 2\sigma)$, both experiments will keep taking data.

T2K sees asymmetry in ν_e and $\bar{\nu}_e$ rate, while NOvA doesn't.

Колупаева Л.Д.

Tension

- * Huge excitement due to this tension.
- * Two main hypothesis about the reasons:
 - $\ast\,$ true inverted hierarchy in Nature;
 - $\ast\,$ non-standard interactions (NSI):

$$H = \frac{1}{2E} \left[UM^2 U^{\dagger} + a \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix} \right]$$

- * $\epsilon_{\alpha\beta}$ the size of the new interaction relative to the weak interaction.
- * Longer baseline = larger NSI effect.
- * Could be due to new heavy states or light mediators.
- * But significance is small ($\sim 2\sigma)$, both experiments will keep taking data.

Global Comparisons: δ_{CP}

- *The δ_{CP} measurements are consistent across all experiments and their combinations.
- *The uncertainty on δ_{CP} remains large.
- *NOvA and T2K will keep taking data, possible ~ 2σ and ~ 3σ sensitivity to CPV for $\delta_{CP} = 3\pi/2$.
- *Final measurement of δ_{CP} will be the task for HyperK and DUNE.

Колупаева Л.Д.

Будущие ускорительные нейтринные эксперименты с длинной базой: T2HK и DUNE

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

<u>Hyper-K</u>

- Усовершенствованный нейтринный пучок J-PARC (Токай)
- Водный черенковский детектор Hyper-Kamiokande
- 8х больше полезная масса
- 2.5х интенсивней пучок

DUNE

- Существенное обновление ускорительного комплекса NuMI (Лаборатория им. Э.Ферми)
- Жидко-аргоновый ТРС
- База осцилляции 1300 км
- О Подземная лаборатория Сэнфорд Самойлов О.Б.

Three-flavo(u)r oscillations

Колупаева Л.Д.

Future landscape: neutrino mass ordering

- * NOvA's sensitivity is 2020 ana projection.
- * Realistically ~2σ along for currently running experiments (w/o joint analyses).
- There is a good chance that NOvA's result will be still very impactful measurement up to ~2028.
- * Future is very competitive.

Future neutrino mass ordering sensitivity

Astrophysics and beyond the Standard Model of particle physics in the NOvA experiment

Oleg Samoylov (on behalf of the NOvA Collaboration)

Joint Institute for Nuclear Research, Dubna

The 6th international conference on particle physics and astrophysics, Moscow (Russia), 29/11-02/12/2022

NOvA Data NuMI events

 Beam trigger structure: 550 μs window, NuMI neutrinos arrive for 10 μs starting at 218 μs

NOvA Data Non-NuMI events

NOvA Data Non-NuMI events

Non ν -oscillation and non ν -cross-section analyses

- * The mass of the detectors target part:
 - 14 ktons for the far detector,
 - = 220 tons for the near detector,
- * The detectors location:
 - FD is on the surface,
 - ND is 100 m underground,
- Providing to study wide Astrophysical program beyond neutrino oscillation and neutrino cross-section measurements,
- * Search and detection for different signals from Space and the Earth's environment:
 - supernova,
 - → magnetic monopole,
 - atmospheric muons and neutrinos,
 - dark matter,
 - potential signals in coincidence with the LIGO/Virgo gravitational wave events.
- * Search for physics **Beyond the Standard Model**:
 - Light dark matter,
 - Neutrino magnetic moment.

Oleg Samoylov – Astrophysics & BSM @ NOvA

Data Driven Triggers

- * Data rate including 100 kHz atmospheric muons is 1.2 GB/s.
- * The beam spill data is selected by the time window.
- Additional physics studies require specific data selection, based on its own online reconstruction.
- * Detector data is formed in 5ms time slices (milliblocks) and distributed to nodes for storage in a circular buffer
 - 170 buffer nodes on Far Detector: 1350s
 - 14 buffer nodes on Near Detector: 1900s
- Milliblocks are processed in parallel DDT processes on buffer nodes (13 DDTs/node).
- * DDT process performs reconstruction and selection, searching for the specific signature. If the signature is found, the trigger signal is sent.
- * GlobalTrigger node receives all the the trigger signals and orders data to be saved to disk for future offline analysis.

Oleg Samoylov - Astrophysics & BSM @ NOvA

ICPPA-2022, Dec-02

Astrophysics and Particle Physics Analyses

Supernovae

- * NOvA is the largest carbon-based supernova detector currently operating.
- * In the event of a **Galactic supernova**, it will provide invaluable data which, in combination with detectors using different target materials, will constrain the flavor content of the supernova burst.
- * The ND and FD have roughly equivalent supernova capabilities, with the ND's small mass being balanced by its low background.
- NOvA can both selftrigger on a supernova burst, if it is within 7 kpc (13 kpc) for a 9.6 (27) solar mass star
 [JCAP10(2020)014], and be triggered by alerts from <u>SNEWS</u>.
- Given the estimated Galactic supernova rate of 3 per century, there is a 15% probability that NOvA observes a supernova burst through 2025(6), with the probability increasing linearly with each additional year.

36

Magnetic Monopole Search

- * As a large tracking detector on the Earth's surface, the FD has the unique capability to detect low-mass (< 10^{10} GeV) monopoles that would not reach underground detectors while setting much more stringent flux limits than previous surface detectors. It is also able to record tracks as slow as $\beta \approx 10^{-4}$, setting it apart from many previous monopole experiments. [Phys. Rev. D 103, 012007 (2021)]
- We separate the monopole search into slow and fast regimes, in which the most distinctive aspect of the signal is the track speed and extreme ionization, respectively. Both searches are expected to be background free, and so the flux limits scale linearly with exposure.
- * A run that continues through 2025(6) would give an estimated flux limit of 4×10^{-16} cm⁻²s⁻¹sr⁻¹ for monopoles with $3 \times 10^{-4} < \beta < 0.8$, matching or surpassing the MACRO and SLIM flux limits while covering a wider range of monopole masses.

Cosmic Rays Studies: Seasonal variation

- NOvA has published a study of the seasonal variation of cosmic multi-muons in the ND (which is 100m underground) [Phys. Rev. D 99, 122004 (2019)]. It confirmed the MINOS observation that the rate of such events underground is unexpectedly higher in the winter.
- The origin of this effect is unknown, although plausible explanations have been put forward. NOvA's analysis thus far has covered two annual cycles. Collecting data for as many annual cycles as possible provides benefits both quantitative and qualitative. The quantitative benefit comes from the need for statistics in the highmultiplicity bins, where the effect is strongest.
- But perhaps more importantly, the two years analyzed so far showed rather different characteristics, with no clear explanation. This is not a question of statistics, but must be related to some unidentified conditions that differ from one year to the next.
- A similar study using FD (on surface) data is published in 2021 [Phys.Rev.D 104 (2021) 1, 012014]. It was also seen seasonal dependence in the rate of multiple-muon showers, which varies in magnitude with multiplicity and zenith angle.
- A run through 2025(6) provides an additional 8 annual cycles, which may or may not be enough to disentangle the relevant effects. Each additional year will provide valuable information.

Oleg Samoylov – Astrophysics & BSM @ NOvA

Cosmic Rays Studies: East-West effect

- We are studying NOvA's ability to measure the east-west asymmetry of the low-energy cosmic ray flux caused by the Earth's magnetic field.
- It is related to low-energy atmospheric neutrinos which form an important background to future proton decay searches.
- The most difficulty in this study in the NOvA Far Detector is to separate this effect from similar ones from overburden hill asymmetry and reconstruction inefficiency.
- We expect that the data we have collected so far is sufficient to reach a systematics-limited measurement.

Cosmic Rays Studies: High energy muons

* A project has begun to study rare high energy muons in detail using NOvA's finegrained tracking abilities, testing a spectrum-measuring technique proposed in R.P. Kokoulin and A.A. Petrukhin, "Theory of the pair meter for high-energy muon measurements," <u>Nucl. Instrum. Meth. A 263, 468–479 (1988)</u>.

Cosmic Rays Studies: Ultra-high energy showers

Shower Origins

Started exploring distribution of shower origins on the sky.

source catalog and AGN catalogFraction
< 2 degrees</th>Point
SourceAGNGood0.730.64Not Good0.850.60Bad0.850.62

Compared to Fermi-LAT point

CORSIKA

Syracuse University

Cosmic Rays Studies: Variation with solar and weather events

- We plan to use ND cosmic data to examine the influence of short-term weather on the underground muon rate, a known but understudied effect.
- * We also seek to follow up on claims of cosmic ray variability during solar flares.
- Study of these phenomena rely on sporadic events outside our control, each of which is likely to have different characteristics.
- * Every additional year of running improves the prospects in proportion to the added exposure.

Gravitational Wave Coincidence

* NOvA triggers on gravitational wave events observed by LIGO/Virgo as part of its multimessenger astronomy program [Phys. Rev. D 101, 112006 (2020), Phys. Rev. D 104, 063024 (2021)]. Our primary observable is a possible flux of supernova-like neutrinos. This could be from an actual supernova, or it could be from an exotic source. We are also sensitive to GeV neutrinos and other similar activity. Gravitational wave astronomy is still a nascent field and there may be surprises in the near future.

Name	ND	FD	$\mathrm{SN}_{27\odot}$	$SN_{9.6\odot}$	Name	ND	FD	$\mathrm{SN}_{27\odot}$	$\mathrm{SN}_{9.6\odot}$
GW150914	Untriggered	Bad	_	_	GW190728_064510	45.0 s	29.6 s	3.2	5
GW151012	Untriggered	No data			GW190731_140936	Untriggered	Untriggered	210	400
GW151226	Untriggered	Untriggered	110	190	GW190803_022701	Untriggered	Untriggered	140	230
GW170104	Untriggered	Untriggered	300	500	GW190814	45.0 s	Untriggered	14	22
GW170608	Untriggered	Untriggered	400	700	GW190828_063405	45.0 s	18.1 s	6	10
GW170729	Untriggered	Untriggered	240	400	GW190828_065509	45.0 s	Untriggered	16	21
GW170609	Untriggered	Untriggered	110	190	S190901ap	45.0 s	45.0 s	3.1	6
GW170814	Untriggered	Untriggered	120	200	GW190909_114149	Untriggered	Untriggered	110	190
GW170817	Untriggered	Untriggered	110	190	S190910d	45.0 s	45.0 s	-4	7
GW170818	Untriggered	Untriggered	180	330	S190910h	45.0 s	45.0s	2.7	5
GW170823	Untriggered	Untriggered	260	500	GW190910_112807	Untriggered	Untriggered	120	190
GW190408_181802	No data	No data	_	_	GW190915_235702	45.0 s	45.0 s	3.0	6
GW190412	Untriggered	Untriggered	170	280	S190923y	45.0 s	45.0 s	3.2	6
GW190421_213856	Untriggered	Untriggered	210	400	GW190924_021846	45.0 s	45.0s	4	7
GW190425	Untriggered	Untriggered	120	190	GW190929_012149	Untriggered	Untriggered	200	340
GW190426_152155	44.7 s	Untriggered	13	19	GW190930_133541	45.0 s	45.0 s	7	13
GW190503_185404	Untriggered	Untriggered	150	270	S190930t	45.0 s	45.0 s	5	10
S190510g	Untriggered	Untriggered	170	280	S191105e	Untriggered	Untriggered	180	310
GW190512_180714	Untriggered	Untriggered	190	330	S191109d	45.0 s	45.0 s	5	8
GW190513_205428	24.7 s	Untriggered	14	20	S191129u	Untriggered	Untriggered	230	400
GW190517_055101	Untriggered	Untriggered	120	200	S191204r	Untriggered	Untriggered	300	500
GW190519_153544	Untriggered	Untriggered	140	250	S191205ah	45.0s	45.0s	2.7	6
GW190521	45.0 s	45.0 s	6	10	S191213g	45.0 s	45.0s	3.4	7
GW190521_074359	Untriggered	Untriggered	170	280	S191215w	45.0 s	45.0 s	4	7
GW190602_175927	45.0 s	45.0 s	6	12	S191216ap	45.0 ≈	29.5 s	2.7	5
GW190630_185205	45.0 s	45.0s	5	9	S191222n	45.0 s	45.0 s	4	7
GW190701 203306	45.0 s	45.0 s	6	11	S200105ae	Untriggered	Untriggered	230	400
GW190706 222641	45.0 s	17.5 s	2.5	5	S200112r	45.0 s	No data	16	23
GW190707_093326	Untriggered	Untriggered	220	400	S200114f	45.0 s	45.0 s	9	15
GW190413_052954	Untriggered	Untriggered	170	280	S200115j	45.0s	45.0s	2.1	4
GW190413 134308	Untriggered	Untriggered	160	270	S200128d	45.0s	45.0s	5	8
GW190424 180646	Untriggered	Untriggered	140	240	S200129m	45.0 s	45.0 s	3.2	6
GW190514_065416	Untriggered	Untriggered	280	500	S200208q	45.0 s	45.0 s	5	7
GW190527_092055	Untriggered	Untriggered	140	240	S200213t	45.0 s	45.0 s	5	10
GW190620 030421	Untriggered	Untriggered	270	400	S200219ac	Untriggered	Untriggered	190	300
GW190708 232457	Untriggered	Untriggered	150	270	S200224ca	45.0 s	No data	22	29
S190718y	18.3 s	Untriggered	17	23	S200225q	45.0 s	45.0 s	3.4	6
GW190719_215514	Untriggered	Bad	_	_	S200302c	45.0 s	45.0 s	4	8
GW190720 000836	45.0 s	45.0 s	4	6	S200311bg	45.0s	No data	16	21
GW190727 060333	45.0 s	45.0 s	5	9	S200316bj	45.0s	45.0 s	2.9	5

Oleg Samoylov - Astrophysics & BSM @ NOvA

Dark Matter

- * Boosted Dark Matter may accumulate in the Sun and annihilate, producing GeV neutrinos. The signal is an upwards-going muon in the FD that points back to the Sun. Because of NOvA's low threshold and segmentation, we may be more sensitive than Super-K for dark matter masses 1–4 GeV. The search is likely background-limited by atmospheric neutrinos, so the sensitivity scales as the square root of exposure.
- It is also possible to search for dark matter produced in the NuMI beam using the NOvA ND. The signal would be an excess of very forward ~ 10 GeV EM showers.

Beyond the Standard Model of the Particle Physics Analyses

Light Dark Matter

- LDM is could be described in the models of feeble coupling of Dark sector particle to Standard model particle.
- Vector portal mediator V (Dark photon)
- Created in pp collisions, decays to DM XX
- Indirect production (meson decay) dominant for low m_χ

NOvA estimated sensitivity to a dark photon decaying into $\chi\chi^{\dagger}$ pairs for the benchmark point $\alpha_{\rm D} = 0.5$ and $m_{\rm A'} = 3m\chi$. [Phys. Rev. D 99, 051701(R)]

46

10-7

 10^{-8}

- За 10 лет работы и анализа данных NOvA были опубликованы работы по осцилляциям нейтрино.
- Опубликовано несколько работ по изучению взаимодействий нейтрино с материей, измерению сечений нейтрино.
- Опубликованы работы по поиску экзотических явлений, таких как стерильные нейтрино, тёмная материя, магнитные монополи.
- Кроме того, NOvA проводит мониторинг сигналов из космоса и атмосферы Земли, например, для регистрации нейтрино от сверхновых, гравитационные волны, атмосферные нейтрино и мюоны.
 - Ожидаемые результаты (2027)
- о NOvA. Измерение иерархии масс нейтрино и δCP со значимостью ≤4σ и ≤2σ соответственно.
- О Обновленные результаты по другим направлениям.

Dzhelepov Laboratory of Nuclear Problems

Joint Institute for Nuclear Research

Спасибо за внимание!

Summary

- * <u>The NOvA experiment</u> provides wide astrophysical program and other particle physics searches beyond neutrino oscillation and neutrino cross-section measurements.
- * These additional physics analyses stimulate development of the NOvA subsystems: DAQ, Trigger, Hardware, Detector simulation.
- * 7 paper already published and many analyses ongoing.
- * Many benefit from data collected throughout the full run to 2025(6) or longer, particularly the background-free search for magnetic monopoles (FD), studies of the variability of the cosmic ray flux (ND+FD), and our multi-messenger neutrino astronomy program with supernovae and gravitational waves (ND+FD), all of which improve linearly with time.
- * The next 5 years of NOvA running will provide unique opportunities to search for new phenomena.
- * Possible application in the future projects: <u>the DUNE experiment</u>, <u>the SNEWS(v2) system</u>, Multi-messenger astronomy.
- * As a member of <u>JINR group</u>, I would like to thank <u>Russian Science Foundation</u>, which support our researches under grant № 18-12-00271.