Grid-BGC: A Grid-Enabled Terrestrial Carbon Cycle Modeling System

Jason Cope
Ph.D. Candidate
Department of Computer Science
University of Colorado, Boulder

Participants

- This is a collaborative project between the National Center for Atmospheric Research (NCAR) and the University of Colorado at Boulder (CU)
- NASA has provided funding for three years via the Advanced Information Systems Technology (AIST) program
- Researchers:
 - Peter Thornton (PI), NCAR
 - Henry Tufo (co-PI), CU
 - Luca Cinquini, NCAR
 - Jason Cope, CU
 - Craig Hartsough, NCAR
 - □ Rich Loft, NCAR
 - Don Middleton, NCAR
 - Nate Wilhelmi, NCAR
 - Matthew Woitaszek, CU

Project Objectives

- The objective of the Grid-BGC project is to create an end-to-end technological solution for high-end Earth system modeling that will reduce the costs and risks associated with research on the global carbon cycle and its coupling to climate.
- The prime objective of this projects is to allow scientists to easily configure and run simulations of the global carbon cycle.

Outline

- Introduction
- Carbon Cycle Simulation Daymet and BiomeBGC
- Motivation
- Grid-BGC System Architecture
- Implementation Experiences
- Conclusions / Future Work

Carbon Cycle Simulations – Part 1

Carbon Cycle Simulations – Part 2

Carbon Cycle Simulations – Spatial Simulations

- Moving towards spatial simulations
 - Biome-BGC was originally intended as a point-based terrestrial carbon cycle model
 - □ The model can be extended to a spatial model by executing the model for every individual point in the spatial domain
 - Spatial model is embarrassingly parallel
 - Each point requires appropriate configuration files
- Grid-BGC spatial model terminology
 - Tile = a single point-based model
 - □ Job = a model run for a single tile
 - □ Simulation = all point-based models in the analyzed spatial domain

Motivation – Problems With The Old Execution Pipeline

- High operational costs
 - Required significant amount of overhead from scientists to setup and execute the simulations
 - No model failure detection or correction available
- Complex execution pipeline
 - Configuration complexity increased with the size of the simulations
 - Very little automation available
 - Many different system components were required to perform the simulations
- Distributed design
 - Allocated computational resources are located at distributed locations
 - Execution pipeline did not support security and file transfers needs between distributed locations

Motivation – Grid-BGC Project Requirements

- In order to create a high-end earth modeling system, the Grid-BGC system design should
 - Limit the costs of global carbon cycle modeling
 - Decrease modeling complexity
 - Use alternative computational resources
 - □ Reduce the risks and increase reliability of the models
 - Task automation
 - Fault tolerance
 - Provide a secure and accountable operating environment
 - Ease the simulation process for scientists
 - Provide an easy to understand user interface to simplify modeling tasks
 - □ Limit user interactions with the models and other system related tasks
 - Use grid computing technologies to easily enable a distributed computing environment
- □ The Grid-BGC system design can adequately fulfill most of these requirements if treated as a case of the Data Grid Application problem

Motivation – Data Grid Application Problem

- Data Grid A grid computing system that deals with controlled sharing and management of distributed data
- Data Grid Application Problem
 - Computationally expensive model exists that does not completely utilize the computational resources at a single site
 - Partial utilization of resources is viewed as waste or misappropriation
 - Model can be distributed to other computational sites that better suit the models computational requirements
 - Along with other grid computing tools, this model requires data grid technologies to help transfer large data sets required by the computations

Motivation – Data Grid Application Problem

General Solution: Create an offloading compute service deployable at remote grid compute sites.

- □ Targets resources at a collaborating grid computation site to run or support a specific application
- Supports basic data grid application requirements through grid computing tools
- Make compute service generic and extensible so that it can execute any application that fits the Data Grid Application model
- Grid-BGC is a perfect fit for this design pattern.

Motivation – Grid-BGC Design Goal

Design Goal: Allow scientists to easily configure and run simulations of the global carbon cycle.

- Minimize the scientists interaction with the models and the distributed nature of the system
- Automate complex configuration tasks
- Provide failure detection and correction support for the scientific models

Grid-BGC System Architecture – Solution Components

- Web Portal GUI
 - Organize complicated workflows
 - Support collaboration recognizing data object dependencies
- Computational Offloading Grid Service
 - Automate job execution on remote platforms
 - Eliminate user interaction with computational resources
 - Reliable execution of a task
- Data Transfer Facilities
 - Grid-FTP
 - DataMover

Grid-BGC System Architecture – Top Down

Grid-BGC System Architecture – Web Portal GUI

- Portal provides high-level management capabilities to the user base, including:
 - Workflow management
 - Data sharing
 - Collaboration
- Distributed thin-client implementation
- Currently under development

Grid-BGC System Architecture – Bottom Up

Grid-BGC System Architecture – Computation Offloading Grid Service

- □ Globus Grid Service interprets and logs user requests to the Grid-BGC computational infrastructure
 - Exposes methods to request for the system to start, stop, and query Grid-BGC jobs
 - Stores all requests to the Job Management Database
- All requests and responses to and from the service are written in an XML based specification language
 - Details how a method will act upon a Grid-BGC job or the Grid-BGC system
 - Generic language definition can be used for DataGrid problems beyond Grid-BGC

Grid-BGC System Architecture – JobManager, A Reliable Execution Engine

- Daemon executing on the computational infrastructure at CU
- Composed of two separate components
 - □ Reliable Job Execution Service (RJES)
 - Tile Simulation Manager
- Provides reliable and secure job management functionality, including:
 - Starting, stopping, and monitoring of scientific models and other portions of the Grid-BGC software framework
 - Guarantees fault tolerant execution of Grid-BGC jobs
 - Stateless design allows the daemon to easily recover from a crash
 - Can only start Grid-BGC related jobs

Grid-BGC System Architecture – File Transfers Through DataMover

- DataMover
 - Under development by Alex Sim, et al.
 - Lawrence Berkeley National Laboratory
 - □ Project Website: http://sdm.lbl.gov/cgi-bin/srm-dist-index.pl
- DataMover provides reliable file transfers and replication for applications with large data sets
 - GSI Authentication
 - Reliable file transfers
 - File caching
 - NCAR Mass Storage System Interface
- Who else is using it?
 - Earth Systems Grid (NCAR)
 - Visual Data Toolkit (University of Wisconsin)
- Software is still under development

Experiences – Reliability

- Reliable Job Execution Service (RJES)
 - Execution service for Grid-BGC
 - Tracks execution of Biome-BGC, Daymet, and DataMover file transfers
- All Grid-BGC jobs tracked by RJES are arbitrarily restartable
 - Job metadata stored in a persistent database and monitored by Tile Simulation Manager
 - □ RJES polls database for changes in a jobs state and executes an appropriate task if necessary

Experiences – Security

- NCAR Security and Auditing Requirements
 - □ Resource usage must be accounted for
 - Mass storage system (MSS) access is restricted
- MyProxy Solution Description
 - Each Grid-BGC account is issued an internally managed grid certificate
 - All certificates are managed by a MyProxy server
 - □ As MSS access is needed, the certificate is requested from the MyProxy server and the JobManager assumes the identity of the user using the certificate

Experiences – Security

MyProxy Solution - Animation

Experiences – System Testing

- End-to-end tests
 - Test execution of Grid-BGC software framework
 - Testing environment
 - Client on NCAR's Dataportal Server
 - JobManager on CU's Hemipshere Cluster
 - New job request every 15 minutes for seven days
 - Successfully ran all jobs
- Successful fault tolerance tests
 - JobManager: shutdown, restart, invalid requests, kill running models
 - DataMover: network failures, invalid file requests, low disk space

Future Work

Reconcile our project with the definition of workflow:

Workflow: A collection of tasks that are processed on distributed resources in a well defined order.

- By definition, we seem to have a workflow
 - Globus middleware is starting to provide workflow support
 - As it matures, we should probably try to use it
- We don't have portable executables
- Our portal interface supports modifiable shared data with dependencies
- Workflow initiatives: partial match with our project

Future Work

- Integrated testing
 - Full connect portal workflow management to Grid service
 - Run end-to-end simulation jobs to produce impressive maps
- Model performance testing
 - Appropriately target available clusters
- Multiple compute cluster support
 - Static selection by researchers with their own clusters
 - Dynamic selection among available clusters by load
- More security enhancements
 - Integrate our own CA with the NCAR login service

Conclusions

- The Grid-BGC system design provides
 - A cost effective solution for global carbon cycle modeling
 - A simplified approach to high-end earth system modeling
- The Grid-BGC design solution to the data grid application problem can be used to execute similar applications in a distributed environment

Acknowledgements

This research was supported in part by the National Aeronautics and Space Administration (NASA) under AIST Grant AIST-02-0036 the National Science Foundation (NSF) under ARI Grant #CDA-9601817, and NSF sponsorship of the National Center for Atmospheric Research.

Grid-BGC: A Grid-Enabled Terrestrial Carbon Cycle Modeling System

Questions?
Ideas? Comments?
Suggestions?

http://www.gridbgc.ucar.edu Jason.Cope@colorado.edu

