
1/21/2005 GlobusWorld 2005 1

Benchmark Suite for Web
Services

Madhu Govindaraju
Grid Computing Research Laboratory

Department of Computer Science
Binghamton University

State University of New York

1/21/2005 GlobusWorld 2005 2

Web Service Performance
Performance is governed by the design and
implementation choices of

SOAP toolkit
XML parser

1/21/2005 GlobusWorld 2005 3

Motivation for a Benchmark
SOAP implementations are interesting and
important to compare and contrast for three different
reasons:
1. Web services based grid applications place
disparate requirements on their communication
substrate

Diverse application requirements lead to a wide
range of different implementation choices.

1/21/2005 GlobusWorld 2005 4

Motivation (contd)
2. Various individual features of SOAP require
clever implementation techniques to achieve
improved performance.

Often, the naïve implementation leads to
considerable processing time.

3. The number of SOAP implementations and
toolkits is both large and growing.

SOAP toolkits exist in languages such as C, C++,
Java, C#, Perl and Python.

1/21/2005 GlobusWorld 2005 5

Requirements for Web Services
Based Applications

High end-to-end performance
Serialization and deserialization efficiency
Small memory footprint
Specific security requirements
Chunking and streaming capability
Minimal toolkit overhead
Scalability
Support for optimized handling of scientific data
structures

1/21/2005 GlobusWorld 2005 6

Designing a SOAP toolkit
Role of HTTP

Content Length of HTTP header
Chunking and Streaming (HTTP 1.0 and 1.1)

Handling Namespaces
Requires efficient use of namespace-stack

Multi-Ref
Needed to efficiently represent data structures
Naïve implementation can hurt scalability

1/21/2005 GlobusWorld 2005 7

Designing a SOAP toolkit (contd)
Handling XML

SAX, DOM and XPP

Dynamic Invocations
Flexibility vs Performance

Compression
SOAP is usually CPU bound, not network bound

Support for Scientific Data
Use Differential Serialization for optimization
Use Trie data structures for efficient parsing

1/21/2005 GlobusWorld 2005 8

Toolkits Compared
gSOAP 2.4
XSOAP/XSUL 1.2.23
AxisJava 1.2
AxisC++ 1.1
.NET 1.1.4322

1/21/2005 GlobusWorld 2005 9

Performance Study
End-to-End performance

array of doubles
array of integers

Deserialization
array of doubles
array of integers
array of strings

Serialization
base64 data sendBase64Imp
array of doubles

1/21/2005 GlobusWorld 2005 10

Differential Serialization for
Optimized SOAP Performance

Michael J. Lewis

Grid Computing Research Laboratory
Department of Computer Science

Binghamton University
State University of New York

1/21/2005 GlobusWorld 2005 11

Motivation

SOAP is an XML-based protocol for Web Services that
(usually) runs over HTTP

Advantages
extensible, language and platform independent, simple,
robust, expressive, and interoperable

The adoption of Web Services standards for Grid
computing requires high performance

1/21/2005 GlobusWorld 2005 12

The SOAP Bottleneck

Serialization and deserialization
The in memory representation for data must be converted to
ASCII and embedded within XML

Serialization and deserialization conversion routines can account
for 90% of end-to-end time for a SOAP RPC call [HPDC 2002, Chiu
et. al.]

Our approach
Avoid serialization altogether, whenever possible

1/21/2005 GlobusWorld 2005 13

Differential Serialization (in bSOAP)
Save a copy of the last outgoing message

If the next call’s message would be similar, then
use the previous message as a template
only serialize the differences from the last message

Outline
assumptions and requirements

applications that repeatedly resend similar messages
data update tracking

strategies and implementations
decrease the cost of partial reserialization
shifting, chunking, stuffing, stealing

performance

1/21/2005 GlobusWorld 2005 14

Update Tracking

How do we know if the data in the next message will be
the same as in the previous one?

If it is different, how do we know which parts must be
reserialized?

How can we ensure that reserialization of message
parts does not corrupt other portions of the message?

1/21/2005 GlobusWorld 2005 15

Data Update Tracking (DUT) Table

Field TPointer SLength FWidth Dirty?
X 5 5 YES
Y 3 7 YES
Z 5 10 NO

POST /mioExample HTTP/1.1
.
<?xml version='1.0'?><SOAP-ENV:Envelope ...>
.
<x xsi:type='xsd:int'>12345</x>
<y xsi:type='xsd:int'>678</y>����
<z xsi:type='xsd:double'>1.166</val>�����
.
</SOAP-ENV:Envelope>

struct MIO { int a; int b; double val;};
int mioArray(MIO[] mios)

1/21/2005 GlobusWorld 2005 16

Problems and Approaches

Problems
Some fields require reserialization
The current field width may be too small for the next value
The current message (or chunk) size may be too small

Solving these problems enables DS, but incurs overhead

Approaches
shifting
chunking
stuffing
stealing
chunk overlaying

1/21/2005 GlobusWorld 2005 17

Performance

Performance depends on
which techniques are invoked
“how different” the next message is (application
specific)

Message Content Matches
• identical messages, no dirty bits

Perfect Structural Matches
• data elements and their sizes persist

Partial Structural Matches
• some data elements change size
• requires shifting, stealing, stuffing, etc.

We study the performance of all our techniques on synthetic
workloads of scientific data

(our other work models application traffic)

1/21/2005 GlobusWorld 2005 18

Experimental Setup

Machines
Dual Pentium 4 Xeon 2.0 GHz, 1 GB DDR RAM, 15K RPM 18 GB
Ultra-160 SCSI drive.

Network
Gigabit Ethernet.

OS
Debian Linux. Kernel version 2.4.24.

SOAP implementations
bSOAP and gSOAP v2.4 compiled with gcc version 2.95.4,
flags: -O2
XSOAP 1.2.28-RC1 compiled with JDK 1.4.2
bSOAP/gSOAP socket options: SO_KEEPALIVE,
TCP_NODELAY,SO_SNDBUF = SO_RCVBUF = 32768
Dummy SOAP Server (no deserialization).

1/21/2005 GlobusWorld 2005 19

Message Content Matches
Message Content Match:

The entire stored message template can be reused without
change
No dirty bits in the DUT table
Best case performance improvement

Performance Study
compare gSOAP, XSOAP, and bSOAP, with differential
serialization on and off
vary the message size
vary the data type: doubles and MIO’s (not shown)

1/21/2005 GlobusWorld 2005 20

bSOAP ~= gSOAP
10X imprvmt in DS

(expected result)
Upper bound

1/21/2005 GlobusWorld 2005 21

Perfect Structural Matches

Perfect Structural Matches:
Some data items must be overwritten (DUT table dirty bits)
No shifting required

Performance study:
vary the message size
vary the reserialization percentage
vary the data type

Doubles and
Message Interface Objects (MIO’s, <int, int, double>) (not shown)

1/21/2005 GlobusWorld 2005 22

Send Time depends
directly on % serialized
Important to avoid
reserializing

1/21/2005 GlobusWorld 2005 23

Shifting
Partial Structural Match:

Not all of array elements are reserialized

Performance Study
Intermediate size values to maximum size values.
Array of doubles (18 24)
Array of MIO’s (36 46) (not shown)

1/21/2005 GlobusWorld 2005 24

100% 75%: Imprvt 23%
75% 50%: Imprvt 31%
50% 25%: Imprvt 46%

1/21/2005 GlobusWorld 2005 25

Stuffing
Closing Tag Shift:

Stuffed whitespace comes after the closing tag
Must move the tag to accommodate smaller values

Performance Study
send smallest values (1 char)
vary field size: smallest, intermediate, maximum
Array of doubles (max = 24, intermediate = 18, min = 1)
Array of MIOs

(max = 46, intermediate = 38, min = 3) (not shown)

1/21/2005 GlobusWorld 2005 26

Closing tag shift, not
increased message
size, effects stuffing
performance

1/21/2005 GlobusWorld 2005 27

Summary

SOAP performance is poor, due to serialization
and deserialization
Differential serialization

Save a copy of outgoing messages, and serialize
changes only, to avoid the observed SOAP
bottleneck

Techniques:
Shifting, chunking, chunk padding, stuffing,
stealing, chunk overlaying

Performance is promising (17% to 10X improvement),
depends on similarity of messages

1/21/2005 GlobusWorld 2005 28

Extra Slides

1/21/2005 GlobusWorld 2005 29

Other Approaches

SOAP performance improvements
Compression
Base-64 encoding
External encoding: Attachments (SwA), DIME

These approaches may be necessary and can be
effective. However

they undermine SOAP’s beneficial characteristics
interoperability suffers

The goal
improve performance, retain SOAP’s benefits

1/21/2005 GlobusWorld 2005 30

Applications that can Benefit

Differential Serialization is only beneficial for
applications that repeatedly resend similar messages

Such applications do exist:
Linear system analyzers
Resource information dissemination systems
Google & Amazon query responses
etc.

1/21/2005 GlobusWorld 2005 31

Data Update Tracking (DUT) Table

Each saved message has its own DUT table
Each data element in the message has its own
DUT table entry, which contains:

Location: A pointer to the data item’s current location in
the template message
Type: A pointer to a data structure that contains
information about the data item's type.
Serialized Length: The number of characters needed to
store the last written value
Field Width: The number of allocated characters in the
template
A Dirty Bit indicates whether the data item has been
changed since the template value was written

1/21/2005 GlobusWorld 2005 32

Updating the DUT Table
DUT table dirty bits must be updated whenever in-memory
data changes

Current implementation
explicit programmer calls whenever data changes

Eventual intended implementation
more automatic
variables are registered with our bSOAP library
data will have accessor functions through which changes must be
made
when data is written, the DUT table dirty bits can be updated
accordingly

• disallows “back door” pointer-based updates
• requires calling the client stub with the same input param variables

1/21/2005 GlobusWorld 2005 33

Shifting

Shifting: Expand the message on-the-fly when the
serialized form of a new value exceeds its field width

Shift the bytes of the template message to make room
Update DUT table entries for all shifted data

…</w><x xsi:type='xsd:int'>1.2</x><y xsi:type=….

becomes

…</w><x xsi:type='xsd:int'>1.23456</x><y xsi:type=….

Performance penalty
DUT table updating, memory moves, possible memory reallocation

1/21/2005 GlobusWorld 2005 34

Stuffing

Stuffing: Allocate more space than necessary for a data
element

explicitly when the template is first created, or after
serializing a value that requires less space
Helps avoid shifting altogether
Doesn’t work for strings, base64 encoding

…<y xsi:type='xsd:int'>678</y><z xsi:type=…

can be represented as

…<y xsi:type='xsd:int'>678</y>����<z xsi:type=…

1/21/2005 GlobusWorld 2005 35

Stealing

Stealing: Take space from nearby stuffed fields
Can be less costly than shifting [ISWS ‘04]

…'>678</y><z xsi:type='xsd:double'>1.166</val>�����

y can steal from z to yield…

…'>677.345</y><z xsi:type='xsd:double'>1.166</val>�

Performance depends on several factors
Halting Criteria: When to stop stealing?
Direction: Left, right, or back-and-forth?

1/21/2005 GlobusWorld 2005 36

Worst Case Shifting
“Worst case shifting”:

All values are reserialized from smallest size values to largest
size values.

Performance Study
vary the chunk size (8K and 32K)
Array of doubles (1 24).
Array of MIOs (3 46) (not shown)

1/21/2005 GlobusWorld 2005 37

Worst case shifting is 4X
slower

Reducing chunk size
doesn’t help

1/21/2005 GlobusWorld 2005 38

A Compiler-Based
Approach to Schema-
Specific ParsingKenneth Chiu

Grid Computing Research Laboratory
SUNY Binghamton

Sponsored by NSF ANI-0330568.

1/21/2005 GlobusWorld 2005 39

Motivation
Schema provides additional information.
Use it to speed up parsing.
Generate code as efficient as hand-written.

From this:
<element name=“el3” maxOccurs=“3” …>

Generate this:
assure_3_chars_in_buf();
if (*c++ != ‘e’) goto error;
if (*c++ != ‘l’) goto error;
if (*c++ != ‘3’) goto error;
if (++el3_count > 3) goto error2;

1/21/2005 GlobusWorld 2005 40

A Schema Compiler

Schema IL 1 IL 2 Machine
Code

Pass 1 Pass 2 Code Gen.

Interpret
Schema Data

Structures
Compile

Engine

1/21/2005 GlobusWorld 2005 41

Prototype Architecture

Small
Memory

C++XML
Schema

Generalized
Automata

Back-EndsFront-Ends

RELAX
NG

Fast C++

Java
Bytecode

1/21/2005 GlobusWorld 2005 42

Generalized Automata
A generalization of PDAs.

Each GA has a set of variables.
Possibly unbounded in value.

Each transition is “guarded” by a predicate over the variables.
Each transition has a set of actions over the variables.

Actions are executed when the transition is taken.
Not a model for computation, since anything can happen in
predicates and actions.

In theory can handle any kind of schema construct. Real
question is whether it enables generation of optimized code for
that construct.

1/21/2005 GlobusWorld 2005 43

Why Not CFGs?
CFGs are very good for complex syntactic structures.

Very good at things like recreating an AST for an expression
from a sequence of chars.

XML structure is relatively simple.
Easy to recreate the tree structure from a sequence of chars.

CFGs cannot model some things well, like occurrence
constraints.
Want something that permits a well-defined set of transforms,
without being too restrictive.

1/21/2005 GlobusWorld 2005 44

Example

1
SS A/π

TT A/π

2

3

1/21/2005 GlobusWorld 2005 45

Predicates and Actions
Predicates and actions are the instruction set of an
abstract schema machine.

Transformed into executable code.
Definition not part of GA model.

One set for all schema languages?
Regular tree language
Efficiency

1/21/2005 GlobusWorld 2005 46

Examples
match ‘a’

Current input character is ‘a’.
occurrence ‘el3’ ‘<= 5’

Element ‘el3’ has occurred no more 5 times.
consume

Consume current input character.
prefix_start

Beginning of namespace prefix.
prefix_char ‘a’

Encountered prefix character ‘a’.
prefix_end

End of prefix.

1/21/2005 GlobusWorld 2005 47

Examples
RELAX NG <interleave>
<interleave>
<ref name=“a”>
<oneOrMore>

<ref name=“b”>
</oneOrMore>

</interleave>

not char/check_max ‘a’ 1
53

1

a
2

<

b not char/inc_count ‘b’
4 6

1/21/2005 GlobusWorld 2005 48

Content

<e> tag
</e> tagcall

return

Type Content

<f> tag
return

call
</f> tag

1/21/2005 GlobusWorld 2005 49

NGA to DGA
Easier to generate NGAs than DGAs.
Conversion takes two steps.

Move compression
Similar to epsilon closure.

Subset construction
Each predicate has a readset.

Variables it reads to evaluate.
Each action has a writeset.

Variables it changes.

1/21/2005 GlobusWorld 2005 50

Move Compression
31 =u 3

2

4

41 =u

1
10 ←u

1/3 01 ←= uu
3

4
1/4 01 ←= uu

1

1/21/2005 GlobusWorld 2005 51

Move Compression

2

4

31 =u

40 =u

10 ←u 3
1

40 ←u
5

1/21/2005 GlobusWorld 2005 52

Subset Construction

2

5

444 / Aπ
21 >u

55 / Aπ1 3
51 <u

2,3

5

44 / Aπ
4

1

51 ≥u

52 1 << u

2

44 / Aπ

55 / Aπ

55 / Aπ21 ≤u
3

1/21/2005 GlobusWorld 2005 53

Performance Test
Schema
<schema>
<complexType name="elemType">

<choice>
<element name="sub1" type="string"/>
<element name="sub2" type="string"/>

</choice>
</complexType>
<complexType name="topType">

<sequence>
<element name="elem" type="elemType“
maxOccurs="N"/>

</sequence>
<attribute name="attr" type="string"/>

</complexType>
</schema>

1/21/2005 GlobusWorld 2005 54

Results

1/21/2005 GlobusWorld 2005 55

Ratio to SSP

1/21/2005 GlobusWorld 2005 56

Conclusions
Goal is to generate code as good as hand-written.
Compile all the way down to low-level IL.
Generalized automata seem to be an appropriate low-level IL.
Preliminary results are encouraging, but not conclusive.
Future work:

More schema features, namespaces.
Optimizations.

Outlining, reverse partial evaluation
Buffer precheck

Higher-level IL?
Enables different optimizations?

Compiling to special architecture?
XSLT-like transforms? Given a transform that swaps two elements, can we
generate code as efficient as can written by hand?

1/21/2005 GlobusWorld 2005 57

Predictive XML
Parsing with
gSOAP

Robert van Engelen
Florida State University

1/21/2005 GlobusWorld 2005 58

The gSOAP Toolkit
Project timeline

1/2
00

0

v1.1
streaming

XML;
SOAP1.1

RPC

v1.2
latency
hiding;
WSDL
output

10
/20

01

1/2
00

2

v2.0
MT/safe

3/2
00

2

v1.3
HTTPS

SSL

v2.1
DIME

7/2
00

12
/20

9/2
00

2

v2.2
streaming

DIME
SOAP1.2

02 3

v2.3 v2.4
Doc/Lit;

WSDL1.1
tools

v2.5
WS-BP1.0a

v2.6 v2.7
SwA;
WS-*

>50,000 downloads

12
/20

03

1/2
00

3/2
00

9/2
00

4 4 4

http://gsoap2.sourceforge.net

www.genivia.com

1/21/2005 GlobusWorld 2005 59

Static proxy generation with schema-specific DFA-based XML parsing

Static proxy generation with schema-specific PDA-based XML parsing

Dynamic proxy generation (DII) with generic XML parsing

flexibility
pe

rf
or

m
an

ce

EARLY BINDING

LATE BINDING

Static proxy generation with generic XML parsing

Early Versus Late Bindings

1/21/2005 GlobusWorld 2005 60

gSOAP Architecture
Static binding

WSDL tools to generate bindings
Stub/skeleton compiler to generate C and C++ code

Schema-specific predictive XML parsing
Supports in-situ serialization and deseralization of
application’s native C/C++ data structures in XML

Integrated stacks
TCP/IP - HTTP/S - DIME/MIME - SOAP/XML
Transport latency hiding

1/21/2005 GlobusWorld 2005 61

Client Application Development and
Deployment

Service definition:
service.wsdl

WSDL Importer
Client Application

Marshal Demarshal

Stub

Client Proxy Object

Bindings:
service.h

Client-side codegSOAP Compiler

1/21/2005 GlobusWorld 2005 62

Server Development and
Deployment

Service definition:
service.wsdl

WSDL Importer
Web Service

Marshal Demarshal

Skeleton

Server Object

Bindings:
service.h

Server-side codegSOAP Compiler

1/21/2005 GlobusWorld 2005 63

Server Development and
Deployment (Alternative)

Web Service

Marshal Demarshal

Skeleton

Server Object

Bindings:
service.h

Server-side codegSOAP Compiler

Service definition:
service.wsdl

1/21/2005 GlobusWorld 2005 64

Schema-Specific Predictive XML
Parsing

Bindings

WSDL Importer &
gSOAP CompilerXML Schemas Predictive

XML Parser

class ns__List
{ std::vector<char*> item;
int in(char* tag);
int out(char *tag);

};

<complexType name=“List”>
<complexContent>

<sequence>
<element name=“item”
type=“xsd:string”
maxOccurs=“unbounded”/>

</sequence>
</complexContent>

</complexType>

int ns__List::in(char* tag)
{ if (begin_element(tag) != OK)

return TAG_MISMATCH;
in_vectorOfstring(item, “item”);
end_element(tag);

}

1/21/2005 GlobusWorld 2005 65

Latency Hiding with Integrated
Stacks

Serialization

HTTP
over

TCP/IP

Deserialization

1/21/2005 GlobusWorld 2005 66

Latency and Speedup

Interop Round 2 Base echoVoid() latency

0.01010.00340.00270.00160.0013Latency
(sec)

AxisJava
v1.2

.NET
v1.1.4322

AxisC++
alpha

XSOAPgSOAP
2.4

better

Relative average speedup for array-based SOAP messages
(10 to 80,000 ints, doubles, and strings)

1.010.714.014.020.3Speedup

AxisJava
v1.2

AxisC++
alpha

.NET
v1.1.4322

XSOAPgSOAP
2.4

better

1/21/2005 GlobusWorld 2005 67

DFA-Based Parsing

DFA (opt)

DFA

better

gSOAP

Expat

1/21/2005 GlobusWorld 2005 68

Conclusions
Static bindings with predictive XML parsing delivers
performance
Two-stage compilation 1) bindings 2) code
Integrated stacks to improve performance
DFA-based parsing probably too limited for realistic
applications
More info: http://gsoap2.sourceforge.net

1/21/2005 GlobusWorld 2005 69

V4.0
WSRF-C
Performance Aspects

Sam Lang, ANL
GlobusWORLD
10 Feb 2005

1/21/2005 GlobusWorld 2005 70

GT4: Programming to Events
Some Definitions:

Event - System Call, I/O
Asynchronous - No ordering requirements for
events, things happen when ready. Callbacks
handle incoming events.
Non-blocking - A function that doesn’t wait for an
event to complete before exiting
Blocking - A function must wait for an event
Register - Mapping a handler to an event

GT4 WSRF-C Events
Request/Response Sent
Request/Response Received
Notification (State Change)

1/21/2005 GlobusWorld 2005 71

Event Programming Cont.
Register for an Event

A handler or callback function is written
myResourcePropertyCallback(ResourcePropertyValue val)
{

…
}

Callback is passed to a non-blocking register function
GetResourcePropertyRegister(endpoint, myResourcePropertyCallback);

GetResourceProperty call gets a response, handler is called
Internals: Flavors and Threads

Programming model internally manages threads
User must manage shared data
Can be built with/without threads

1/21/2005 GlobusWorld 2005 72

Events and Performance
Useful in Asynchronous Environments
Performing Many WS operations

In Sequence:
1. Send Request -> Wait -> Receive Response
2. Send Request -> Wait -> Receive Response
3. …
Asynchronously:
1. Send Request A
2. Send Request B
3. …
4. Receive Response A
5. Receive Response B
6. …

1/21/2005 GlobusWorld 2005 73

Events and WSRF
Polling: WS-ResourceProperties

State is exposed by ResourceProperties
State is distributed in grid environments

Pushing: WS-Notifications
Notifications are events
Implement a callback handler for notifications
Subscribe to Notification Topics (maybe RPs) and register
callback for notifications
Many notifications, one callback�

Web Service Container
Invocations trigger event handling code, calling service impl

1/21/2005 GlobusWorld 2005 74

Performance Numbers
Many GetResourceProperty operations

In Sequence:

Asynchronously:

1/21/2005 GlobusWorld 2005 75

PyGridWare
Performance AspectsKeith R. Jackson

Lawrence Berkeley National
Laboratory

1/21/2005 GlobusWorld 2005 76

Overview
PyGridWare is a Python based implementation of
the WSRF and WS-Notification specifications.
Builds on top of the Python open-source SOAP
toolkit ZSI.
Uses XML tooling from both 4Suite and the Python
standard library.

Much of the underlying tooling is written in C.
Main development focus has been BP-1.1 and
WSRF compliance, not performance.

But …

1/21/2005 GlobusWorld 2005 77

Initial Experience
When we first looked at performance, our
numbers were abysmal!

Completely unacceptable for any real world
usage.

Profiler showed we were defaulting to a
Python based XML parser for parsing.
Switching to 4Suite’s cDomlette increased
performance approximately 20 times.

Adequate for now, but still not fast enough.
Shifting to an event driven container also
made a huge difference.

Based on the Twisted project.

1/21/2005 GlobusWorld 2005 78

Current Performance
Perf data for 100 add ops with breakdown of
hotspots. W/wo security.

1/21/2005 GlobusWorld 2005 79

Planned Improvements
Still major hotspots in the current code.

Namespace handling
c14n

Evaluate the other XML toolkits with Python
bindings.

libxml2
Consider developing Python bindings to the GT
WSRF-C asynchronous SOAP parser.
Use C based implementations where possible to
eliminate hotspots, e.g., c14n, http transport.

1/21/2005 GlobusWorld 2005 80

Conclusions
Adequate performance is critical to the success of
WSRF.

Most of the overhead is in XML serialization and
parsing (about 2 to 1 serialization to parsing).

We are focused on producing a standards compliant
WSRF toolkit.

Very interested in ongoing work in improved XML
parsing techniques.

Hopefully we can take advantage of the great work
others have described here today!

	Benchmark Suite for Web Services
	Web Service Performance
	Motivation for a Benchmark
	Motivation (contd)
	Requirements for Web Services Based Applications
	Designing a SOAP toolkit
	Designing a SOAP toolkit (contd)
	Toolkits Compared
	Performance Study
	Differential Serialization for Optimized SOAP Performance
	Motivation
	The SOAP Bottleneck
	Differential Serialization (in bSOAP)
	Update Tracking
	Data Update Tracking (DUT) Table
	Problems and Approaches
	Performance
	Experimental Setup
	Message Content Matches
	Perfect Structural Matches
	Shifting
	Stuffing
	Summary
	Extra Slides
	Other Approaches
	Applications that can Benefit
	Data Update Tracking (DUT) Table
	Updating the DUT Table
	Shifting
	Stuffing
	Stealing
	Worst Case Shifting
	A Compiler-Based Approach to Schema-Specific Parsing
	Motivation
	A Schema Compiler
	Prototype Architecture
	Generalized Automata
	Why Not CFGs?
	Example
	Predicates and Actions
	Examples
	Examples
	Content
	NGA to DGA
	Move Compression
	Move Compression
	Subset Construction
	Performance Test
	Results
	Ratio to SSP
	Conclusions
	High-Performance Predictive XML Parsing with gSOAP
	The gSOAP Toolkit
	Early Versus Late Bindings
	gSOAP Architecture
	Client Application Development and Deployment
	Server Development and Deployment
	Server Development and Deployment (Alternative)
	Schema-Specific Predictive XML Parsing
	Latency Hiding with Integrated Stacks
	Latency and Speedup
	DFA-Based Parsing
	Conclusions
	The Globus Toolkit V4.0WSRF-C Performance Aspects
	GT4: Programming to Events
	Event Programming Cont.
	Events and Performance
	Events and WSRF
	Performance Numbers
	PyGridWarePerformance Aspects
	Overview
	Initial Experience
	Current Performance
	Planned Improvements
	Conclusions

