

OGSA-DAI for GT4 Developers Function, Platforms and Use

The OGSA-DAI Team
info@ogsadai.org.uk
Neil Chue Hong, Ally Hume, Mike Jackson

Outline

- Introduction to OGSA-DAI
- OGSA-DAI Architecture
 - Discussion of OGSI/WS-I/WS-RF issues
- Using the Client Toolkit
- Writing Activities
- Wrap Up

Introduction to OGSA-DAI

Motivation

- Entering an age of data
 - Data Explosion
 - CERN: LHC will generate 1GB/s = 10PB/y
 - VLBA (NRAO) generates 1GB/s today
 - Pixar generate 100 TB/Movie
 - Storage getting cheaper
- Data stored in many different ways
 - Data resources
 - Relational databases
 - XML databases
 - Flat files
- Need ways to facilitate
 - Data discovery
 - Data access
 - Data integration
- Empower e-Business and e-Science
 - The Grid is a vehicle for achieving this

Composing Observations in Astronomy

- 12 waveband coverage of large areas of the sky
- Total about 200 TB data
- Doubling every 12 months
- Largest catalogues near 1B objects

Data and images courtesy Alex Szalay, John Hopkins

Database Growth

EMBL Database Growth

total record number (millions)

Share and share alike!

- Many challenges:
 - Scalability, performance, heterogeneity, ownership, economics
 - Common schema, data description and semantics, data formats, process and procedure, provenance
- Can be solved only through collaboration and the sharing of:
 - Ideas
 - Efforts
 - Resources
- Perhaps most importantly: sharing of data
 - Beware of data huggers!
- Emerging Open Grid Infrastructures will
 - Allow global collaboration
 - Change the way that we can work

Emergence of Virtual Organisations

Data Requirements

- What do we need for effective sharing of data?
 - Structured, organised, annotated & curated data
 - Computable data models
 - Visualisation of data
 - Data provenance
 - Shared distributed systems
 - Networked workplaces, instruments, data sources
 - Metadata, ontologies, standards
 - Authentication, authorisation, accounting, policies

Terabyte → Petabyte

	Terabyte	Petabyte
RAM time to move	15 minutes	2 months
1GB WAN move time	10 hours (\$1000)	14 months (\$1 million)
Disk cost	7 disks = \$5000 (SCSI)	6800 Disks + 490 units + 32 racks = \$7 million
Disk power	100 Watts	100 Kilowatts
Disk weight	5.6 Kg	33 Tonnes
Disk footprint	Inside machine	60 m2

Approximately Correct in May 2003 *Distributed Computing Economics*Jim Gray, Microsoft Research, MSR-TR-2003-24

Mohammed & Mountains

- Petabytes of Data cannot be moved
 - It stays where it is produced or curated
 - Hospitals, observatories, European Bioinformatics Institute
 - A few caches and a small proportion cached
- Distributed collaborating communities
 - Expertise in curation, simulation & analysis
- Diverse data collections
 - Discovery depends on insights
 - Unpredictable or unexpected use of data

Meta-data: describing data

- Choosing data sources
 - How do you find them?
 - How are they described and advertised?
 - Is the equivalent of Google possible?
- Meta-data is required describing:
 - Structure of data
 - Types of data
 - Operations supported/available
 - Access requirements
 - Quality of service?
- No established standards for heterogeneous data sources

Cultural Challenges

- Changing the way we work?
- Publication and sharing of results
 - Increased volume and diversity = increased opportunity?
 - Allows independent validation of methods and derivatives
 - Responsibility, ownership, credit, citation
- Many distributed data resources
 - Data collected from observation, simulation & experiment
 - Independently owned & managed
 - No common goals or design
 - Work hard for agreements on foundation types and ontologies
 - Autonomous decisions change data, structure, policy, etc
- Diversity
 - No "one size fits all" solutions will work

Security Challenges: Medical Imaging Data

- Diagnosing based on sensitive patient data
 - Users: a (group of) doctor(s)
 - Retrieve an image, run algorithm, examine result and write diagnosis, maybe re-run another algorithm.
- Secure Data Retrieval
 - Patient data is sensitive, needs to be stored anonymously at all times
 - Site admins are not trustworthy strip or encrypt patient data from image
 - Replication of data not always allowed
- High security needs
 - Strong authorization
 - Fine-grained access control mechanisms
 - Leaking patient information results in prosecution.

DAIS View Of Data Services Model

- A Data Service presents a Consumer with an interface to a Data Resource.
- A Data Resource can have arbitrary complexity, for example, a file on an NFS mounted file system or a federation of relational databases.
- A Consumer is not typically exposed to this complexity and operates within the bounds and semantics of the interface provided by the Data Service

DAIS Specification Landscape

DAIS and Other Standards/Specs

the globus alliance

Goals for OGSA-DAI

- Aim to deliver application mechanisms that:
 - Meet the data requirements of Grid applications
 - Functionality, performance and reliability
 - Reduce development cost of data centric Grid applications
 - Provide consistent interfaces to data resources
 - Acceptable and supportable by database providers
 - Trustable, imposed demand is acceptable, etc.
 - Provide a standard framework that satisfies standard requirements
- A base for developing higher-level services
 - Data federation
 - Distributed query processing
 - Data mining
 - Data visualisation

Infrastructure Architecture

Data Intensive X Scientists

Data Intensive Applications for Science X

Simulation, Analysis & Integration Technology for Science X

Generic Virtual Data Access and Integration Layer

Job Submission

Brokering

Workflow

tructured Data

Registry

Banking

Authorisation

Data Transport

Resource Usage

OGSA-DAI

Grid or Web Service Infrastructure

Compute, Data & Storage Resources

Structured Data Relational

XML Semi-structured

Distributed

Virtual Integration Architecture

Core features

- An extensible framework for building applications
 - Supports relational, xml and some files
 - MySQL, Oracle, DB2, SQL Server, Postgres, XIndice, CSV, EMBL
 - Supports various delivery options
 - SOAP, FTP, GridFTP, HTTP, files, email, inter-service
 - Supports various transforms
 - XSLT, ZIP, GZip
 - Supports message level security using X509 certificates
 - Client Toolkit library for application developers
 - Comprehensive documentation and tutorials
- Third production release (R5) on 3 December 2004
 - OGSI/GT3 based
 - Also previews of WS-I/OMII and WS-RF/GT4 releases

OGSA-DAI Services

- OGSA-DAI uses three main service types
 - DAISGR (registry) for discovery
 - GDSF (factory) to represent a data resource
 - GDS (data service) to access a data resource

GDSF and GDS

- Grid Data Service Factory (GDSF)
 - Represents a data resource
 - Persistent service
 - Currently static (no dynamic GDSFs)
 - Cannot instantiate new services to represent other/new databases
 - Exposes capabilities and metadata
 - May register with a DAISGR
- Grid Data Service (GDS)
 - Created by a GDSF
 - Generally transient service
 - Required to access data resource
 - Holds the client session

Heterogeneity

- Data source abstraction behind GDS instance
 - plug in "data resource implementations" for different data source technologies
 - does not mandate any particular query language or data format

DAISGR

- DAI Service Group Registry (DAISGR)
 - Persistent service
 - Based on OGSI ServiceGroups
 - GDSFs may register with DAISGR
 - Clients access DAISGR to discover
 - Resources
 - Services (may need specific capabilities)
 - Support a given portType or activity

- Data resource publication through registry
- Data location hidden by factory
- Data resource meta data available through Service Data Elements

And there's a lot more that you can do ...

Why OGSA-DAI?

- Why use OGSA-DAI over JDBC?
 - Can embed additional functionality at the service end
 - Transformations, compressions
 - Third party delivery
 - The extensible activity framework
 - Avoiding unnecessary data movement
 - Common interface to heterogeneous data resources
 - Relational, XML databases, and files
 - Usefulness of the Registry for service discovery
 - Dynamic service binding process
 - Provision of good meta-data is necessary
 - Language independence at the client end
 - Do not need to use Java
 - Platform independence
 - Do not have to worry about connection technology, drivers, et

OGSA-DAI Architecture

The OGSA-DAI Team info@ogsadai.org.uk

OGSA-DAI Architecture

Address Multiple Interfaces

- OGSI:
 - OGSI 1.0
 - Globus Toolkit 3
- WS-I:
 - ◆ WSDL, SOAP, UDDI, WS-I 1.0, WS-Security
 - Axis 1.2 / Tomcat
- WS-RF:
 - WS-Addressing, WS-RF specifications.
 - Globus Toolkit 4
- DAIS

High Level Design

Data Layer

- Need to support heterogenous data resources:
 - Relational: MySQL, SQL Server, Oracle, DB2, HSQL.
 - XML:Xindice, eXist.
 - Files: files, BinX files.
 - RowSet, SQLResponse, XMLSequence, XMLDocument:
 - Views onto Relational / XML resources or explicit XML files.

Data Layer

- Other resources:
 - Lists of (data) resources currently in existence.
 - Mappings of logical data resource names to database URIs and database names, collection names,....
 - Mappings of logical resource names to actual resource names.
 - Contexts for sessions / transactions:
 - Cached / transformed data.
 - Data awaiting delivery / collection.
 - Registry.
- Resource persistence

Business Logic Layer – DAI-Core

- Connection to, management of and interaction with data resources.
- Engine:
 - Execution of individual activities.
 - Execution of Perform documents specifying sequences of activities.
- Data transformation and delivery.
- Full DAI resource management:
 - Activity / Perform status resources.
 - Data cache / asynchronous delivery-related resources.
 - Session and transaction resources.

DataResourceMediator

Presentation Layer

- OGSI:
 - Globus Toolkit 3.2 / Tomcat
- WS-I:
 - Apache Axis 1.2 / Tomcat
- WS-RF:
 - ◆ Globus Toolkit 3.9.x (4.0) / Tomcat

DAIS

Interface - Information Flow

- Service=>DAI Core
 - Data resource configuration information.
 - (Data) resource property names.
 - Perform documents.
 - Security context.
- DAI Core=>Service
 - Response documents.
 - (Data) resource properties:
 - Request status.
 - Database schema.
 - Supported activities.
 - Perform document schema.

The globus alliance — Presentation Interface — DataResourceManager

OGSI

Grid Data Service Factory

DataResource ManagerConfig

Grid Data Service

DataResource Manager

WS-I

Data Service

DataResourceManager

- Service maintains:
 - List of data resources it exposes.
 - Indexed collections:
 - DataResourceManagerConfigs.
 - DataResourceManagers.
- Issues:
 - Exposing properties callbacks.
 - Dynamic DataResourceManager creation.
 - Persisting information on current DataResourceManagers, request status...

WS-RF

WS-RF

- Service maintains:
 - List of data resources it exposes.
 - Indexed collection DataResourceManagerHome
 - DataResourceManagerResources wrapper.

• Issues:

- Exposing properties callbacks.
- Dynamic DataResourceManager creation.
- Persisting information on current
 DataResourceManagers, request status...
- Rely on GT4 infrastructure or provide our own?
 - Needed for WS-I anyway.

Other Issues

- Supporting GridFTP and GDT-related activities in WS-I and WS-RF:
 - Without dependence on GT3 code.
- Pluggable architecture:
 - Logging.
 - Auditing and accounting.
 - Performance and benchmarking.
 - Security.
 - **•** ...

Things that must be changed

- Java names
- Qualified Names in metadata
- Metadata / Service Data
- XML Namespaces
- XML Schemas

OGSA-DAI GDS Overview

- Low-level components of a Grid Data Service
 - Engine
 - Activities
 - Data Resource Implementation
 - Role Mapper
- Extensibility of OGSA-DAI architecture
 - Interfaces and abstract classes
 - Design Patterns

GDS Internals

Grid Data Service

- GDS has a document based interface
 - Consumes perform documents
 - Produces response documents
 - Additional operations for 3rd party data delivery
- Motivation for using a document interface
 - ◆ Change in behaviour ≠> interface change
 - Reduce number of operation calls
 - Extensible

The GDS Engine

- Engine is the central GDS component
- Dictates behaviour when perform documents are submitted
 - Parses and validates perform document
 - Identifies required activities
 - Processes activities
 - Composes response document
 - Returns response document to GDS

Perform Documents

- Perform documents
 - Encapsulate multiple interactions with a service into a single interaction
 - Abstract each interaction into an "activity"
 - Data can flow from one activity to another

Query →
Transformation →
Delivery

- Not quite workflow
 - No control constructs present (conditionals, loops, variables)

Activities

- An Activity dictates an action to be performed
 - Query a data resource
 - Transform data
 - Deliver results
- Engine processes a sequence of activities
- Subset of activities available to a GDS
 - Specified in a configuration file
- Data can flow between activities (chained)

Activity Taxonomy

Activities fall into three main functional groups

- Statement
 - Interact with the data resource
- Delivery
 - Deliver data to and from 3rd parties
- Transform
 - Perform transformations on data

Predefined Activities

The Activity Framework

- Extensibility point
- Users can develop additional activities
 - To support different query languages
 - XQuery
 - To perform different kinds of transformation
 - STX
 - To deliver results using a different mechanism
 - WebDAV
- An activity requires
 - XSD schema
 - Java implementation
- sql_query_statement.xsd
- SQLQueryStatementActivity

The Activity Class

 All Activity implementations extend the abstract Activity class

Activity

- ~ mContext: ActivityContext
- + Activity(element: Element)
- ~ cleanUp()
- ~ initialise()
- ~ processBlock() : void
- ~ setCompleted()

Connected Activities

Connected Activities cont.

The Perform Document

```
<?xml version="1.0" encoding="UTF-8"?>
<gridDataServicePerform
    xmlns="http://ogsadai.org.uk/namespaces/2003/07/gds/types"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xsi:schemaLocation="http://ogsadai.org.uk/namespaces/2003/07/gds/types
     ../../../schema/ogsadai/xsd/activities/activities.xsd">
 <documentation>
  This example performs a simple select statement to retrieve one row
  from the test database then delivers the results to an FTP location.
 </documentation>
 <sqlQueryStatement name="statement">
  <expression>
    select * from littleblackbook where id=10
  </expression>
  <resultSetStream name="output"/>
 </sqlOueryStatement>
<deliverToURL name="deliverOutput">
  <fromLocal from="output"/>
  <toURL>ftp://anon:frog@ftp.example.com/home</toURL>
 </deliverToURL>
</gridDataServicePerform>
```

Activity Inputs and Outputs

- Activities read and write blocks of data
 - Allows efficient streaming between activities
 - Reduces memory overhead
- A block is a Java Object
 - Untyped but usually a String or byte array
- Interfaces for reading and writing
 - BlockReader and BlockWriter

Data Resource Implementations

- Governs access to a data resource
 - Open/close connections
 - Validate user credentials using a RoleMapper
 - Facilitate connection pooling
- Provided for JDBC, XML:DB, and Files

Accessing Data Resource Sequence Diagram

Advantages of the Activity Model

- Avoid multiple message exchanges
 - Multiple activities within a single request
- Extensible
 - Developers can add functionality
 - Could import third party trusted activities
- Simplicity
 - Internal classes manage data flow, access to databases, etc
- Allows for optimisation
 - GDS engine can optimise internals

Issues with current Activity Model

- Incomplete syntax
 - No typing of inputs and outputs
 - How do you determine the data types that can be accepted?
- Incomplete semantics
 - What does it mean to be a FilterActivity?
- Keeping implementation and XML Schema fragment in synch
- Puts workload on the server
 - May need dynamic job placement

Summary (Architecture)

- Supporting different interfaces is difficult
 - lowest common denominator means loss of functionality or increase in workload
 - want interoperability as no platform will dominate (just now)
 - Globus Toolkit provides a lot of useful functionality

Summary (GDS Design)

- The Engine is the central component of a GDS
- Activities perform actions
 - Querying, Updating
 - Transforming
 - Delivering
- Data Resource Implementations manage access to underlying data resources
- Architecture designed for extensibility
 - New Activities
 - New Role Mappers
 - New Data Resource Implementations

The OGSA-DAI Client Toolkit

Overview

- The Client Toolkit
- OGSA-DAI Service Types
- Locating and Creating Data Services
- Requests and Results
- Delivery of Data
- Data Integration

Why use a Client Toolkit?

- Nobody wants to write XML!
- Users aren't concerned about the connection mechanism
- Protects developer from
 - Changes in activity schema
 - Changes in service interfaces
 - Low-level APIs
 - DOM manipulation

OGSA-DAI Services

- OGSA-DAI uses three main service types
 - DAISGR (registry) for discovery
 - GDSF (factory) to represent a data resource
 - GDS (data service) to access a data resource

ServiceFetcher

 The ServiceFetcher class creates service objects from a URL

Registry

- A registry holds a list of service handles and associated metadata
- For example, clients can query a registry for all registered Grid Data Factory Services

 The GridServiceMetaData object contains the handle and the port types that the factory implements

```
String handle = services[0].getHandle();
QName[] portTypes = services[0].getPortTypes();
```

Creating Data Services

 A factory object can create a new Grid Data Service.

```
GridDataService service =
     factory.createGridDataService();
```

 Grid Data Services are transient (i.e. have finite lifetime) so they can be destroyed by the user.

```
service.destroy();
```

Interaction with a GDS

- Client sends a request to a data service
- A request contains a set of activities

- Interaction with a GDS
 The Data service processes the request
- Returns a response document with a result for each activity

Activities and Requests

- A request contains a set of activities
- An activity dictates an action to be performed
 - Query a data resource
 - Transform data
 - Deliver results
- Data can flow between activities

Examples of Activities

SQLQuery

```
SQLQuery query = new SQLQuery(
  "select * from littleblackbook where id='3475'");

    XPathQuery

XPathQuery query = new XPathQuery( "/entry[@id<10]" );</pre>

    XSLTransform

XSLTransform transform = new XSLTransform();

    DeliverToGFTP

DeliverToGFTP deliver = new DeliverToGFTP(
       "ogsadai.org.uk", 8080, "myresults.txt" );
```

Simple Requests

- Simple requests consist of only one activity
- Send the activity directly to the perform method

```
SQLQuery query = new SQLQuery(
   "select * from littleblackbook where id='3475'");
Response response = service.perform( query );
```


Constructing an ActivityRequest

Constructing a Request cont.


```
ActivityRequest request = new ActivityRequest();
request.add( query );
request.add( transform );
request.add( delivery );
```

Data Flow

Connecting activities

```
SQLQuery query = new SQLQuery(
    "select * from littleblackbook where id<=1000");
DeliverToURL deliver = new DeliverToURL( url );
deliver.setInput( query.getOutput() );</pre>
```


Performing Requests

• Finally... perform the request!

```
Response response = service.perform( request );
```

• The response contains status and results of each activity in the request.

```
System.out.println( response.getAsString() );
```

Processing Results

- Varying formats of output data
 - SQLQuery
 - JDBC ResultSet:

```
ResultSet rs = query.getResultSet();
```

- SQLUpdate
 - Integer:

```
int rows = update.getModifiedRows();
```

- XPathQuery
 - XML:DB ResourceSet:

```
ResourceSet results = query.getResourceSet();
```

Output can always be retrieved as a String

```
String output = myactivity.getOutput().getData();
```

Delivery

- Data can be pulled from or pushed to a remote location.
- OGSA-DAI supports third-party transfer using FTP, HTTP, or GridFTP protocols.

```
DeliverToURL deliver = new DeliverToURL( url );
deliver.setInput( myactivity.getOutput() );
```


Delivery Activities

 The DeliverFromURL and DeliverToURL activities transfer data to/from a remote location.

```
DeliverFromURL deliver = new DeliverFromURL( url );
myactivity.setInput( deliver.getOutput() );
```

- Supported protocols are http, ftp, and file.
- Other delivery activities:
 - DeliverFromGFTP/DeliverToGFTP
 - DeliverToStream

Delivering data to another GDS

- The GDT port type allows to transfer data from one data service to another.
- Push: A DeliverToGDT activity of GDS1 connects to an InputStream activity of GDS2
- Pull: Alternatively, an OutputStream activity can be connected to a DeliverFromGDT activity

Delivering Data

- Transfer in blocks or in full
- InputStream activities wait for data to arrive at their input
 - ◆ Therefore, the *InputStream* activity at the sink has to be started before the *DeliverToGDT* activity at the source
- OutputStream activity waits for data to be read from its output
 - OutputStream activity at the source must be started before DeliverFromGDT at the sink

Data Integration Scenario

Conclusion

- Easier to use than the perform document
 - Higher-level APIs
 - Improves usability and shortens learning curve for client development
- Protects developer
 - Shielded from schema changes, protocols
 - Deprecation policy needed
- Limitations
 - Metadata and service-data not yet addressed adequately
 - Higher-level abstraction possible (no factory)

OGSA-DAI Future Work and Wrap Up

Roadmap / Workplan

- Roadmap document available for comment:
 - http://www.ogsadai.org.uk/docs/OtherDocs/OGSA-DAIRoadmapV2.0.pdf
 - User feedback required to drive this document
- Integrate parts of DQP into OGSA-DAI core
 - Addressing platform dependencies
 - Want to include XML data resources
- Move Computation to Data
 - Java mobile code?

WS-I Technical Preview

- A limited functionality evaluation version
 - An OGSA-DAI "Data Service" combining the metadata, configuration and perform document capabilities of the OGSI-based GDSF and GDS services.
 - Access to service metadata provided by a partial implementation of the WS-ResourceProperties specification.
 - Example clients are for testing and coding reference.
- Caveats/Issues:
 - No registry component, no support for 3rd party delivery.
 - Security soon (based on OMII WS-Security plug-in).
 - Document schema and interfaces WILL change.
 - The WSDL is based on the OGSI-based WSDL from OGSA-DAI
- Also works with OMII middleware distribution

WS-RF Technical Preview

- An evaluation version OGSA-DAI based on the Globus Toolkit
 4.0 beta implementation of WSRF.
 - Provides an amalgamation of the capabilities of the OGSIbased GDSF and GDS services
 - Access to multiple data resources from a single service provided by data resource identifiers specified by a client within the WS-Addressing endpoint reference to a data service.
 - Access to service metadata (database schemas, request status, etc) provided by an implementation of the WS-ResourceProperties specification.
 - A WSRF version of the GridDataTransport portType supporting asynchronous data delivery between data services.
- Caveats/Issues:
 - This preview of OGSA-DAI WSRF does not support data service security.
 - Document schema and interfaces WILL change.
 - Will not be supported to same level as main release.
- Will be released as part of the Globus Toolkit 4 beta (3.9.x)

OGSA-DAI Project Webpage

http://www.ogsadai.org.uk

Background
News & Events
Software Releases
Documentation
On-line Tutorials
Support
Training Courses
Links

OGSA-DAI Users Group

- User Group Chair
 - Prof. Beth Plale, Indiana University
- A separate independent body to engage with users and feedback to developers in a formal way
- Held meetings in Edinburgh and Brussels in 2004
 - Presentations from projects using OGSA-DAI
 - Discussion of requirements and issues
 - Discussion of roadmap
- Meetings being arranged for 2005
- Contact Beth Plale (plale@cs.indiana.edu) for more details

FAQ, Support, Mailing List

- Frequently Asked Questions
 - http://www.ogsadai.org.uk/support/faq.php
 - Updated as common problems become clear
- Support for OGSA-DAI releases
 - http://www.ogsadai.org.uk/support
 - support@ogsadai.org.uk
 - Use to report problems
- Discussion list
 - users@ogsadai.org.uk
 - http://www.ogsadai.org.uk/support/list.php
 - General discussion of OGSA-DAI, data and the Grid

Conclusions

- Still early days
 - Standardisation process not stabilising quickly enough
 - Infrastructure still developing and prone to change
- OGSA-DAI acting as an enabler
 - Showing people what can be done
 - Evolving and improving with each release
- Usage patterns are similar
 - Call for people to work together to solve similar problems
 - Try to implement in core OGSA-DAI
- Some problems are not OGSA-DAI specific
 - Metadata, time zones, security, ...
- Data discovery opens up a window of integration opportunity
 - Should we continue with registries ourselves?
- Please try it out!
 - It's free and supported
 - Make suggestions, extend functionality, contribute to DAIS-WG