

Resource Virtualization and Management Using WSRF/WSN and WSDM

Latha Srinivasan Hewlett-Packard GlobusWorld 2005 February 9, 2005

Goals

- Overview of the concepts behind management and virtualization and how WSRF, WSN and WSDM fit
- Examples to illustrate how to apply WSRF, WSN and WSDM
- Places to get additional information

Agenda

- Management and Virtualization
- WSRF as a virtualization engine
- Managing a virtual resource
- WSDM MUWS & MOWS
- Management tool integration
- HP-Globus open source contributions to Apache
- Q & A

Management

- What needs to be managed:
 - Hardware & software resources:
 - Computer, disk, network, database, operating system, etc.
 - Logical (sometimes transient) resources:
 - Print job, executing application, etc.
- Resources must:
 - Operate correctly
 - Meet availability & performance criteria
- Management:
 - Monitor status & performance
 - Respond to internal & environmental changes
 - Initiate routine operations: configure, start, stop, tune, ...
 - Maintain the resource & its environment

Manageability

- Definition: The ability of a resource to be managed
- Manageability interfaces support common operations:
 - Control: start, stop, etc.
 - Monitoring: status & performance
- Manageability standards:
 - Specify standard interfaces for common operations
 - Manage resources in a uniform, interoperable fashion

Problem:

- Existing interfaces are generally resource-specific
- Difficult to manage disparate resources with inconsistent interfaces

Solution:

- Virtualization!

Virtualization

Definition:

- Make a common set of abstract interfaces available for a set of similar resources
- ...allowing them to be viewed and/or manipulated in a common way
- ...hiding differences in their properties and operations

Source: OGSA Glossary v1.0

Key benefits:

- Common, well-published, interoperable interfaces that can be used in Grid, Utility Computing, etc.
- Easier integration of management interfaces across virtualized resources
- · Web services technology is one enabler of virtualization

Resource Virtualization

WS-Resource Framework (WSRF)

- Describe common ways to represent, access and modify resources
- Specifications under development in the OASIS WSRF Technical Committee
- Evolution of GGF's OGSI, since deprecated; convergence of Grid and Web Services
- Core concept is the WS-Resource:
 - Representation of state in a Web services context
 - Provides access mechanisms for resource state
 - Manage the lifetime of state
 - Aggregate "stateful" resources
 - Describe faults related to resource manipulation

WSRF: an illustration

WS-Notification (WSN)

- Common mechanisms to represent Web Services Events
- Specifications under development in the OASIS WSN Technical Committee
- Successor to the events portion of OGSI
- Utilizes the WS-Resource concepts to:
 - Create, manage subscriptions
 - Define basic notification message format
 - Define "topics" for event notification

WSN: an illustration

WSRF & WSN: Enablers of Virtualization

- WSRF provides a set of foundational specifications to build higher level services:
 - Standard interface definition and service invocation constructs provided by XML and WSDL
 - Standard, interoperable constructs to model real life entities (physical and logical) as WS-Resources
 - Formal methods to access and modify properties modeled in WS-Resources
 - Standard ways to manage lifetime of WS-Resources
- WSN builds upon the WSRF specifications to provide mechanisms for notifications, subscriptions and topics.

WSRF & WSN Example: Disk

- Identify attributes of the disk to be captured
 - E.g,: Number of Blocks, Blocksize, Filesystems
- Create XML schema definitions for the attributes

- Disk properties that we want to expose are in the <schema> section of the WSDL file
- WSDL PortType element refers to the resource we want to virtualize:
 - E.g: <portType name="DiskPortType"
 wsrf-rp:ResourceProperties="tns:DiskProperties">
 - portType has an attribute that references the Resource Properties document

WSRF & WSN Example (cont'd)

ResourceProperties example:

```
<element name="DiskProperties">
  <complexType>
     <sequence>
       <element ref="tns:Manufacturer" minOccurs="0" />
       <element ref="tns:size" />
       <element ref="tns:NumberOfBlocks" />
       <element ref="tns:FileSystem" minOccurs="1"</pre>
         maxOccurs="2" />
       <element ref="tns:TopicSpace" minOccurs="1"</pre>
         maxOccurs="unbounded" />
    </sequence>
  </complexType>
</element>
```


WSRF & WSN Example (cont'd)

- Access, update and query disk properties:
 - GetResourceProperties, GetMultipleResourceProperties
 - SetResourceProperties
 - QueryResourceProperties

Note: The actual "backend" operations of modifying, accessing and querying disk properties must be implemented by the user.

- Custom operations for disk:
 - Assign to a storage array, unassign,...
- Set up notifications:
 - Subscribe, Manage, Cancel
- Topics:
 - Resource Property additions, removals, modifications
 - Others

Managing a Virtualized Resource

- Define manageability interfaces to support common operations:
 - Get & Set Operational Status:
 - for monitoring & control operations
 - Get & Set Metrics:
 - for performance operations
 - Get & Set Relationships:
 - to aid discovery
- Define manageability attributes & metadata
 - Identifier, security policies
- Define management events
 - Relationship added, Resource created

Web Services Distributed Management

- Web Services Distributed Management (WSDM):
 - Specifications addressing Web Services management for distributed resources
 - Developed by OASIS WSDM Technical Committee (TC)
- HP contributed Web Services Management Framework to the TC; other contributions by were also made
- Two specifications:
 - Management <u>using</u> Web Services (MUWS)
 - Management of Web Services (MOWS)
- Version 0.5:
 - Released April 2004
- Version 1.0:
 - a major update
 - Committee draft released December 2004

WSDM

Source: WSDM MUWS 1.0 Specification

WSDM-MUWS

- Management <u>Using</u> Web Services
- Foundational specification of WSDM (i.e. used by MOWS)
- Defines common capabilities for managing arbitrary resources
- Management features are packaged as Management Capabilities (set of Operations/Properties/Metadata/Events) that are composable
- Topics for events related to management capabilities
- Identity capability (required):
 - Resourceld:
 - Globally-unique ID for managed resource
 - Unique for all time
 - Persistence throughout the lifetime of manageability endpoint
 - Guidelines for determining equality of endpoints

WSDM-MUWS (cont'd)

- Manageability Characteristics Capability (optional)
 - List of properties describing which management capabilities are supported
- Correlateable Properties Capability (optional)
 - Used to determine whether two WS-Resources represent the same managed resource
 - Set of "match" expressions on resource properties (boolean, XPath 1.0, XPath 2.0)

WSDM-MUWS (cont'd)

- Configuration Capability (optional)
 - Any resource property exposing a value that, when changed, changes the operational behavior of the resource

- Description Capability (optional)
 - Provides caption, textual description and version information for a resource

WSDM-MUWS (cont'd)

- Operational Status Capability (optional)
 - Representation of availability of a resource:
 - Available
 - PartiallyAvailable
 - Unavailable
 - Unknown
- Metrics Capability (optional)
 - Defines data types for different kinds of metrics
 - Predefined Integer and Duration types
 - CurrentTime resource property

WSDM-MUWS Relationships

- Describes association between resources; optional
- Type property conveys semantics
- Can have properties
 - Relationship Type, taxonomy can be represented:

- Type is xsd:any with verbal restrictions in the spec; no specific types defined
- Exposed as array of Relationship resource properties
- Relationships' lifetimes can be managed using WS-ResourceLifetime

WSDM-MUWS Advertisement

- Defines four Notification topics, optional
 - ManageabilityEndpointCreation
 - ManageableResourceCreation:
 - Special case of ManageabilityEndpointCreation
 - ManageabilityEndpointDestruction
 - ManageableResourceDestruction:
 - Special case of ManageabilityEndpointDestruction
- Example
 - WSEE (Web Services Execution Environment) sends notification for creation of a Web service

WSDM-MUWS: an illustration

WSDM-MOWS

- Builds upon WSDM-MUWS to manage Web service endpoints:
 - An application of MUWS
- Manageability endpoint and management endpoint:
 - Both Web service endpoints
 - Could be same or different
 - Either approach is transparent to consumers
- Typical management operations:
 - Query status of Web service endpoint (up, down)
 - Number of queries processed
 - Describe relationships between endpoints

- ...

Example: Manageability integration

- Disk example with manageability
- Add MUWS properties:

```
<!-- MUWS Resource Identity properties -->
    <element ref="muws-xs:ResourceId" />
<!-- MUWS Resource Description properties -->
    <element ref="muws-xs:Name" minOccurs="0" />
    <element ref="muws-xs:Version" minOccurs="0" />
<!-- MUWS Resource State properties -->
    <element ref="muws-xs:OperationalStatus" />
```


Example: Manageability integration (cont'd)

Add MUWS operations:

Note: Actual "start" & "stop" operations must be implemented by the developer

Management Tool Integration

- Goal: Utilize WSDM as the management channel
- Components needed:
 - Implementation of WSDM (and WSRF and WSN)
 - Expose resource manageability interfaces as WSDM-compliant Web services
 - Execute in a Web service container; receive and send SOAP messages
 - Provide base management interfaces and capabilities that can be extended by application-specific services, as needed
 - Provide bootstrapping/discovery strategies (typically, a known "root object")
 - Lifecycle management of WSDM Web services
 - Management Tool
 - WSDM client; ability to send and receive SOAP messages
 - Support for policy regarding access control for operations
 - Understand discovery strategy adopted by WSDM Implementation

Management Tool integration

Example: Management Tool Integration

- HP's OpenView suite provides:
 - Functionality to create managed nodes on the server side and representations on the client side (console):
 - Reflects the hierarchy and dependencies of the various resources in a managed environment
 - Management channel that communicates using the WSDM protocol
 - Ability to create custom message groups for events that are generated
 - Alerts; specification of severity levels; color-coding for different severity levels
 - Generate customized reports for various aspects of the managed environment, such as performance data

Open-Source Contributions to Apache

- HP has made three open-source contributions to the Apache Software Foundation:
 - Two announced jointly with the Globus Alliance
- Contributions:
 - Implementation of WSRF ("Apollo")
 - Implementation of WSN ("Hermes")
 - Implementation of WSDM-MUWS ("Muse")
- All three projects are in the "incubation" stage:
 - Committers from HP, Globus & others
 - Seeking widespread participation

Apache "Apollo" Project

- WSRF 1.2 implementation
- Project website:
 - http://incubator.apache.org/apollo
- Developers' mailing list
 - apollo-dev@ws.apache.org

Apache "Hermes" Project

- WSN 1.2 implementation
- Project website:
 - http://incubator.apache.org/hermes
- Developers' mailing list:
 - hermes-dev@ws.apache.org

Apache "Muse" Project

- MUWS 0.5:
 - Fully implemented
- MUWS 1.0:
 - Re-engineered to build on top of separate WSRF & WSN implementations
 - Targeted for March/April 2005
- Project website:
 - http://incubator.apache.org/muse
- Developers' mailing list:
 - muse-dev@ws.apache.org

Tutorials, additional information

- Tutorials provided on Apollo, Hermes and Muse sites:
 - Documentation → Tutorial
 - Examples, templates of services provided
 - Trail Map walks through process of creating interfaces, generating stubs, service deployment and service invocation

References

- WSRF: http://www.oasis-open.org/apps/org/workgroup/wsrf/
- WSN: http://www.oasis-open.org/apps/org/workgroup/wsn/
- WSDM: http://www.oasis-open.org/apps/org/workgroup/wsdm/
- OGSI: http://forge.gridforum.org/projects/ogsi-wg
- GGF: http://www.ggf.org
- HP technologies: http://www.hp.com/go/technologies

Q&A

Questions?