

Building an Open Science Grid

Ruth Pordes, Dane Skow Fermilab

representing the Open Science Grid Consortium

Grid2003

Shared Grid Infrastructure - 2004

-Goal to build a shared Grid infrastructure to support opportunistic use of resources for stakeholders.

Stakeholders are NSF, DOE sponsored **Grid Project** and US LHC

CERN LHC: USCMS testbeds & data challenges end-to-end HENP applications virtual data research

Grid3 Is a Success!

Team of cor., pare. and ac. deployed (simple) services in a Common infrastructure and interfaces across existing computing facilities.

Operating stably for over a year in support of computationally intensive applications.

Added communities without perturbation.

LIGO


SDSS

Grid Services Offered:

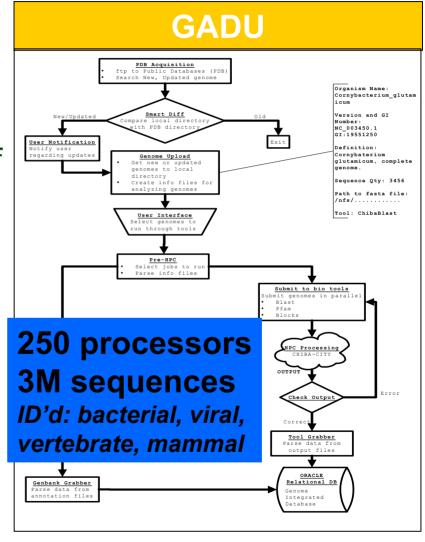
- Compute Element
 - Gateway through Globus GT2 GRAM; Support for 5 Batch systems
 - Minimal installation requirements on job execution nodes.
- Data Management
 - Data movement through GridFTP.
 - Space management through published disk areas (\$APP, \$DATA, \$TMP)
- Workflow Management
 - Planning through GriPhyN VDS, Pegasus, VO specific schedulers.
 - Job Execution management through Condor-G, DAG, GridMonitor,
- Monitoring, Information & Accounting
 - Parallel systems for completeness: GT2 MDS, ACDC, MonaLISA, Ganglia, GridCAT
- User Authentication
 - LCG/EGEE Virtual Organization Management Service (VOMS)
- Operations
 - Grid Operations Center (iGOC)
 - Grid Testers: Exerciser, GridCat

Grid3 Resources Continue to Grow

New sites come through existing VOs or through agreement with Steering Committee.

Sites verification scripts test readiness.

Grid3 is resilient against new sites and applications and minor s/w upgrades.

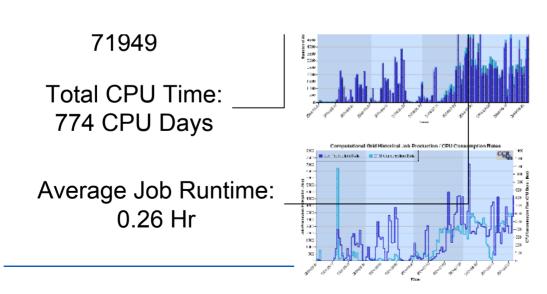

Parallel "Grid3Dev" of ~7 sites used for new and updated service testing and verification.

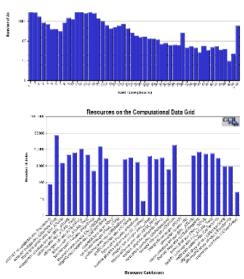
Bioinformatics: Genomic Searches and Analysis

- Searches and find new genomes on public databases (eg. NCBI)
- Each genome composed of ~4k genes
- Each gene needs to be processed and characterized
 - Each gene handled by separate process
- Save results for future use
 - also: BLAST protein sequences

Astrophysics: SDSS Job Statistics on Grid3

Advanced Computational Data Center (ACDC) Job Monitoring


Grid3 Detailed Job Analysis


Temporal summary starting May 1 2004 to ending date:

to ending date: September to 2004 to inclusive

for: All tresources

VOs share sites with simple priorities established through the batch system.

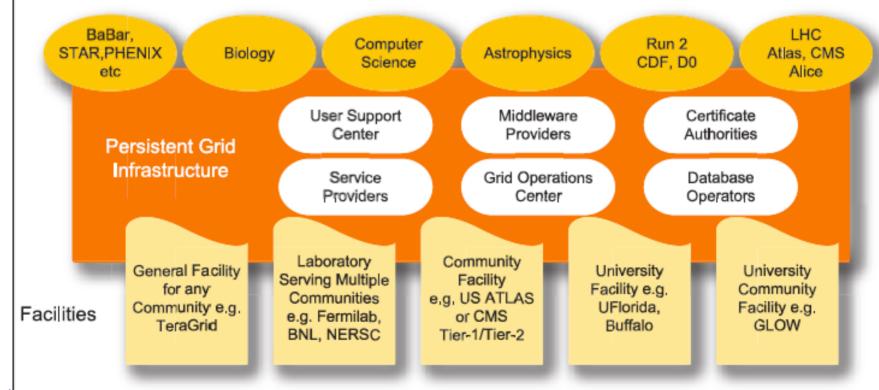
Open Science Grid A Multi-Disciplinary Sustained Production Grid

Grid built and maintained as a coherent consistent infrastructure from

Adiabatic Evolution of Grid3!

- Shared and opportunistic use of resources for executing jobs from all contributors.
- Open to science contributors.
- Partnering with other Grids for interoperability and coherency.
- Inclusive of small sites and organizations and usable as a Computer Science Laboratory.

Open Science Grid


- LHC experiments and in particular US LHC software and computing committed to critical path reliance on Production Grids data analysis.
- Building system to manage and provide access to
 - <7PB distributed storage by2008
 - <3MSpecInts computation by 2009
 - ~8 Regional Centers distributed globally serving ~100 University distributed globally to serve ~2000 physicists.
- US LHC will present its resources to the Open Science Grid and actively contribute common services and validation of the infrastructure.

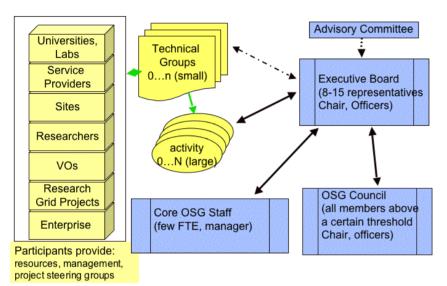
Facilities support Application Community Open Science Grid Grid Environments through Common Interfaces and Infrastructure

Open Science Grid

Applications, Infrastructure, and Facilities

Applications

Character of Open Science Grid


- Distributed ownership of resources with diverse local policies, priorities, and capabilities.
- Guaranteed and opportunistic use of resources provided through Facility<-> VO contracts.
- Validated supported core services based on Virtual Data and NMI Toolkits. (currently GT2)
- Adiabatic evolution to increase scale and complexity.
- Services and applications contributed from external projects.
 Low threshold to contributions and new services.

OSG Organization Structure

Open Science Grid

Activities:

Technical Groups:

Security

Storage

Education

Monitoring & Information

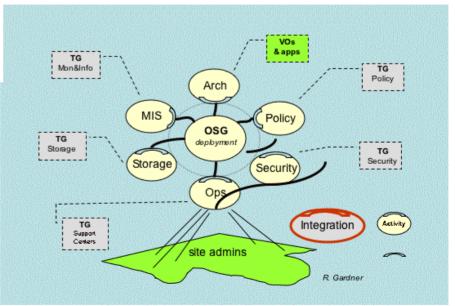
Policy

Support Centers

Governance

Integration

Deployment


Security Incident Response

SE Service Readiness

Site Account Mapping Service Readiness

Discovery Service Readiness

Operations

OSG Deployment Plan

Open Science Grid

- Evolve Grid3 to OSG in Spring 2005:
 - Flip the switch end of February.
 - Time-box of March and April to provision and consolidate.
- "Grid3Dev" iVDGL Grid Laboratory will integrate and validate new services.
- Joint projects contributing new and extended services:
 - Monitoring and Discovery infrastructure University of Buffalo, University of Chicago, Caltech, US CMS, PPDG...
 - Storage Services LBNL, US CMS, Fermilab, PPDG...
 - Account mapping and access control (AuthZ) US ATLAS, US CMS, LCG, PPDG..
 - Operations Indiana iGOC, iVDGL, LBNL, Fermilab...

1/21/2005 GlobusWorld Feb 2005 12

OSG Architecture

- OSG Blueprint documents principles and best practices to guide engineering, design and implementations:
 - The OSG architecture will follow the principles of symmetry and recursion.
 - Services should function and operate in the local environment when disconnected from the OSG environment.
 - Policy should be the main determinant of effective utilization of the resources.
- OSG promotes common interfaces in front of different implementations.
 - Sponsor testing and validation suites to support and ensure this.
 - Migration to WSRF & Web Services starting.
- No conceptual boundary between Grid wide and VO services

Many Services must be added

- Storage resource access and management,
 - both to provide contracted persistent storage of data and management of data caches and temporary stores.
- Dataset management and caching,
 - meta-data services and management, wide area location and distribution of large scale data.
- Planning and optimization for effective use
 - discovery and scheduling
 - robust use of opportunistically available resources
- Multi-user access and support
 - from single, non-technical investigators to large cooperating groups within a managed organization.
- Diagnosis and troubleshooting
 - to manage the increase in scale and complexity.

Operations Is Key: Long list of responsibilities

	Science Grid	Grid Operations			
Shell	Science Grid Providers	Services	Consumers		
nanage	ement		application d		
ex	perts collective		virtual organiza	virtual organizations	
	engineering		resource owners & providers	ource owners & providers	
	service desk		users		
		faciliate and support communication	ons		
	COOI	dinate and track problems and securit			
		coordinate and track requests for assi	istance		
		respond to "how to" questions			
	рі	ublish status and problem managemen	nt reports		
		in the repository of support and proce			
	schedule	e and coordinate grid service and midd	lleware changes		
		monitor the status of grid resourc	ces		
	m air	rtain grid-controlled software package:	s and cache		
	pr	ovide site software not supported thro	ough VDT		
		verify software compatibility			
		site installation and configuration su	pport		
		provide ease-of-installation tool	5		
	dev	elop instructions on how to plug thing	s together		
	trout	leshooting for grid service and applica	ation failures		
		provide and maintain common grid se	ervices		
		provide development guidance and ass	sistance		
	prov	vide specialized services for VO's and a	applications		
		create APIs to information resourc	ces		
	lia	ison VDT developers and application d	evelopers		
		maintain the iVDGL VO			
		policy statements			
		policy information and enforceme	ent		

Challenges learned from Grid3

Site & service providing perspective:

- maintaining multiple "logical" grids with a given resource; maintaining robustness; long term management; dynamic reconfiguration; platforms
- complex resource sharing policies (department, university, projects, collaborative), user roles

Application developer perspective:

- challenge of building integrated distributed systems
- end-to-end debugging of jobs, understanding faults
- common workload and data management systems developed separately for each VO

1/21/2005 GlobusWorld Feb 2005 16

Open Science Grid

- Build scalable, robust, effective set of Services.
- Achieve a common goal through community contributions.
- Use separate infrastructures as transparently accessible whole.
- Maintain operational commitment through decades long life-cycle of science community needs.

http://www.opensciencegrid.or

g