

The Mobius Project

Shannon Hastings, Stephen Langella, Scott Oster Tahsin Kurc, Joel Saltz

Ohio State University
Department of Biomedical Informatics
Multiscale Computing Laboratory

Mobius Overview

- The Mobius project identifies, defines, and implements a set of services and protocols enabling the management and integration of both data and data definitions.
- Everything is broken into two components:
 - The protocol definitions and service interfaces.
 - The service implementation of those definitions.
- Mobius intends to conform to all standards set forth by the GGF and will attempt to leverage relevant existing grid technologies.
 - Currently support the GGF/DAIS XML Realization Proposed Specification

Why are we interested in grid data management?

- Seamless data services integration.
- Large scale data management and processing.

Mobius Core Services

- Mako (Federated Adhoc Storage Services)
- Data Translation Service
- Global Model Exchange (GME)

Mobius Extension Services

- VMako (Single virtual service view of a federation of Makos or VMakos)
- Mentat (Semantic data management services)

Mobius Future Services

- Other Higher level query services (semantic query, inference services etc.)
- Data Transportation Services.

Other Needed Grid Services

- Namespace Management
- Service Naming
- Data Replication
- Security

Mako Service

- Exposes existing/new data services as XML data services through a set of well defined interfaces based on the Mako protocol. (GGF/DAIS XML Realization Specification).
- Configurable Protocol Handling
 - Admin specifies handlers to process incoming packets based on type.
 - Specific implementations of handler can easily be written and integrated.

Data Resource Support

- Mako DB
 - In house XML database.
 - Optimized for federated adhoc usage of XML.
 - Plugs into Mako framework.
- XML DB Support
 - Built in support for XML databases that support the XML DB API.
- Other Data Resources
 - Easily integrated, by implementing a small set of handlers for them
 - In the future these handlers will be publicly available.

Mako Specialized Features

- Data Validation
- Element Referencing
 - Static
 - Dynamic through xpath queries
- Lazy Retrieval
- Distributed Document Object Model (DOM)

- Mako Data Referencing Use Case
 - Shows retrieving data that is federated across multiple Mako services.

Virtual Mako

- Simplifies client-side complexity of interfacing with multiple Makos by presenting a single virtualized interface to a collection of federated Makos.
 - "Is a" Mako service implementation
 - Acts as a data integration point for distributed queries
 - Pluggable algorithms for XML instance ingestion/distribution
 - Protocol request broadcast and response aggregation
 - Maps a Virtual Collection to a number of remote standard Collections

Data Translation Service

- Issues
 - How do I translate one data type to another?
 - How do I convert an old version of a data type to a newer one?
- Protocol and service framework for handling the mapping of one data instance or data definition to another should exist.
- Allows two protocol disjoint services to communicate
- Enables translating between changing data types.

Need for a global data definition management!

- What is "global data definition" (Global Models)?
- Promote creation and evolution of standard definitions of data types.
- For communication between multiple institutions they must agree on a common structure or a mapping between structures.
- Allow for sharing and discovery of data definitions in a grid environment.

Global Model Issues

- User/Organization defined entities
 - ex: my "person" != your "person"
- Changing models
- Models disappear
- Prevent conflicting models
- Discovering models
- Multiple definitions of similar models for different communities (syntactic / semantic mapping)

Global Model Exchange

- Manages the Global Model
 - handles presented issues
- Provides submission and discovery protocol
- DNS like architecture
 - Hierarchical authority subordinate domain division
 - Model resolution query messaging
 - Local cache with TTL.

Users/Services publish schemas to the authoritative GME of that namespace. Then any other services/users from similar or different organizations who have the authority will be able to reference, use, alter, etc the data definitions of that schema.

Globus Integration

- Mobius Services have been integrated with Globus and can be run as Globus Grid Services
 - Mobius protocol layered on top of the OGSI protocol
 - Mobius services can be leveraged and discovered using Globus toolkit.
- Integrated Mobius Services take advantage of Globus Security Infrastructure (GSI).
 - Secure Communication
 - Authentication.

Mobius Application Examples

(www.projectmobius.org)

- GridPACS
 - Distributed image management and analysis application.
- BlockMan
 - Large-scale data declustering and querying application.

MOBLUS

Mobius in the Community

NIH-CaBIG

 Mobius has been adopted as a core middleware component of the NIH Cancer Grid effort.

OGSA-DAI

 Mobius has been selected as a principle sister project to the E-Sciences project OGSA-DAI effort.

GGF

 Active members of Data Access and Integration Services Working Group (DAIS-WG)

Biological Research Technology Transfer (BRTT)

Mobius is currently funded under a State of Ohio technology transfer grant.