
/cog/cog

The Java CoG Kit

Gregor von Laszewski
Argonne National Laboratory

University of Chicago

gregor@mcs.anl.gov

http://www.cogkit.org
Updated slides will be available on the CoG Kit web site

The Globus Alliance contains the following members in alphabetical order:

/cog

Funding sources & Acknowledgement

The Java CoG Kit receives funding from the
following sponsors

DOE MICS
NSF NMI

Previous versions of the CoG Kit also received
funding from

NCSA Alliance
Please, contact gregor@mcs.anl.gov in case you
like to work with us more closely.
Acknowledgement:

CoG Team, Globus Team, Globus Alliance, many
others as listed on www.cogkit.org

/cog

Community

Call on the community to help us with
extending and improving the CoG Kit

/cog

Outline

What is the CoG Kit?
Basic definitions
History of the CoG Kit
CoG Kit in action
Relationship to GT versions

Selected Project Components
Design: Abstractions
Programming with Abstractions (Task Graphs)
Visual components: Portals & Applications

Conclusion

/cog

Introduction

/cog

Observation

Problem
Many application developers desire to program the Grid in
familiar higher level frameworks that allow rapid
prototyping.

Solution
We propose to reuse a variety of commodity tools,
protocols, approaches, methodologies, while integrating
Grid software based on the Globus Toolkit

Easier development of advanced Grid services
Easier and more rapid application development
Easier deployment of Grid services
Code reuse and use of component repositories
Use of Web services as part of the Grids
Widespread use of the Grid
Use of commodity technology is not limited to the client!

/cog

Abstractions

Hypothesis:
With rapidly changing technologies it may
be beneficial to have an abstraction that
can be assisting in this technical challenge.

Solution:
CoG Kit abstractions are defined for
precisely that reason.

/cog

Result: CoG Kits

CoG Kits make Grid programming simple
and new technologies are easy to integrate

We focus on a CoG Kit for Java
Others are possible Python, …

Availability: Java CoG Kit since 1997

Our designs are based on experience
reaching back to the beginnings of
Meta-computing and Grid-computing

/cog

Relationship towards GT

Since GT3 CoG Kit is an essential part of GT

CoG Kit protects from an evolving standard

CoG Kit provides simple programming model

CoG Kit supports portal and GUI developers

CoG Kit is a bridge between application and Grid
middleware developers.

CoG Kit has known to be working with
GT1.0 GT2.4, GT3.0.2, GT3.2, GT3.21, SSH

(under dev.) GT3.9.x, GT4, Condor

(community) Unicore

/cog

Relationship to WS-RF
Because …

(Quote: Steve Tuecke, at a GGF meeting):
“WS-RF is still under development. The OASIS standards
process has just begun.”

COG Kit
Provides investment protection while standards are
developed.
Provides a more sophisticated programming model than
just services
Focus on what many high end-users need
You can influence the direction of the CoG Kit by
partnering with us
Will work with future versions of GT, SSH, Condor
(planed), …
We intend to support and integrate with upcoming new
standards

/cog

History

/cog History (cont.)

CoG Kit was selected by IBM to demonstrate Grid computing in Boards of
Directors meeting

2001

von Laszewski joins ArgonneNov. 1996

CoG Team: LDAP browser wins Novel developers award1998

CoG Team: The experimental personal gatekeeper of the Java CoG Kit was been
able to be installed in less than 30 seconds on a PC including Windows, a similar
Globus service installed by an experienced administrator required one to multiple
days.

2000

Term Metacomputer is introduced1992

I-Way1995

Globus Team defines OGSI / Java CoG Kit for GT2.x and GT3.0/OGSI based,
includes visual components such as the CoG Kit Desktop, GridFTP
interface, GRAM interface

2002

Cog Team: The Java CoG Kit experimental Infogram Service architecture was
defined combining execution and information Services as a single Grid service.

2001

Term Java CoG Kit is introduced to include jglobus and other components
in a single toolkit

1999

Term Grid is introduced1998

Globus version 1 / first release of jglobus based on concepts of protocols
and services includes a high throughput fault tolerant
workflow prototype

1997

von Laszewski: Graphical Meta-computing environment 1994

/cog History

CoG Kit receives best research poster award at SC 20042004

CoG team rewrites the workflow component and introduces GridAnt and a
new workflow engine called Karajan that contains flow and structural
control (DAGs, conditions, loops). The workflow concept is expandable.
Check pointing and minimal features for fault tolerance are available.

Result caching is possible based on method signatures.

2002 and
2003

WSRF is defined2003

A class project shows it is possible to define PBS and LSF providers (not
distributed with the CoG Kit)

2004

Major new Java CoG Kit release.

*GT2, GT3, GT4, SSH providers
* Workflow
* Graphical components
* New manual

2005

CoG team introduces the concept of Grid providers making it possible that
the CoG Kit can in principal submit to GT2, GT3, GT4, or SSH. Community
demonstrates also UNICORE provider.

2004

/cog
Use of CoG Kits

JavaJava
CoGCoG
KitKit

OGSA/OGSIOGSA/OGSI

Globus ToolkitGlobus Toolkit
Version 2Version 2

File TransferFile Transfer
GridFTPGridFTP & RFT& RFT

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

Po
rt

al
w

ar
e

Po
rt

al
w

ar
e A

pplications
A

pplications
G

rid
G

rid
Services
Services

Job SubmissionJob Submission

SecuritySecurity

WorkflowWorkflow

Task ManagementTask Management

Information Information
ServicesServices

Globus ToolkitGlobus Toolkit
Version 3Version 3

NPACINPACI

GridLabGridLab

OGCEOGCE

GADUGADU

Access GridAccess Grid

ChimeraChimera
GRIP/GRIP/UnicoreUnicore

PegasusPegasus

ClimateClimate

HEPHEP

ChemistryChemistry
GenomeGenome

Parameter StudiesParameter Studies

AstronomyAstronomy
JavaJava

PythonPython

ChefChef
NanoNano MaterialsMaterials

CoGCoG
LaunchpadLaunchpad

CactusCactus

GridSphereGridSphere

XCATXCAT

PACIPACI

DOEDOE CERNCERN

GAF4JGAF4J
Nimrod/GNimrod/G

GridAntGridAnt

PerlPerl
CoGCoG
KitKit

OGCEOGCE FrameworksFrameworks

ProductionProduction

/cog

Design

/cog

Design

Based on layered model

Flexible

Expandable

Based on Java interfaces

Abstracts protocols

Abstracts services

Provides workflow

/cog

CoG Kit is more than jglobus
Java CoG Kit v4

Documentation Source Community

Unicore providerjglobus

abstractions
(core)

Web Page

Manual

Wiki

Static pages

Gsissh/term

Cert managementgridfaces

Task management

Swing

portlets

Certificate Authority

Matlab

CoG Workflow/gridant

CoGtop /GridDesktop

CoGShell / Grid Shell

Essential part of
GT3.02
GT3.2, GT3.2.1
GT3.9.x, GT4.0

/cog

CoG Abstraction Layers

CoG Abstraction Layer

CoG CoG CoG CoG CoG

CoG Data and Task Management Layer

CoG Gridfaces Layer

CoG CoG

C
oG

 G
ridID

E

GT2
GT3
OGSI
classic

GT4
WS-RF Condor Unicore

Applications

SSH
Others
Avaki
SETI

Nano
materials

Bio-
Informatics

Disaster
Management Portals

CoG Abstraction Layer

CoG CoG CoG CoG CoG

CoG Data and Task Management Layer

CoG Gridfaces Layer

CoG CoG

C
oG

 G
ridID

E

Development
Support

/cog

Selected Project Components

/cog

Focus on Reusable APIs & Components

Abstractions
Provide a simple programming model

Workflow
Workflow abstraction

Portals
Supporting APIs, abstractions and implementations for
portals.

jglobus1.2
GSI security in Java
GRAM protocal & client
gridFTP protocol & client
Myproxy client

Not just API’s but also their implementation

/cogFocus on Abstractions and
Patterns

Abstraction above Grid Toolkits
Task Model

Jobs, information query, file transfer, authentication,
others

Gridfaces model
Abstract views of GUIs to the Grid in different
implementations (SWING, JSP, Portlets, …)

Data Types
Queues, Sets, Brokers, Schedulers. Based on Task
model

/cog

Java CoG Kit abstractions

A programming model based on a task model that
simplifies elementary Grid patterns such as job
execution, file transfer, and file operations.
A programming model that includes execution
flows in the form of directed acyclic graphs (DAG).
The programming model is decoupeling the
definition from the implementation, thus
providing independence from current and future Grid
versions.
Only elementary Grid patterns are considered.
It makes programming the Grid simple
It makes developing Grid portals more easy
Focus is selected functionality

/cog

Design

ExecutableObject

Task

TaskGraph

Handlers

Events

Service

/cog
Design

ExecutableObject

Identity Status

Task
TaskGraph

SecurityContext

ServiceContact

Specification

JobSpecification

FileTransferSpecification

FileOperationSpecification

TaskHandler1

1

1

1

1

1

TaskGraphHandler

1

1

1

*

Dependency
1

1

* 1

Set Queue
1

1

1

Service* 1

*1

1

/cog

Programming with Abstractions

/cog

A simple Programming Pattern
public class COG implements StatusListener{

public void create() { … }
public void submit () { … }
public void statusChanged (StatusEvent e) { … }
public static void main (String arg[]){

try {
COG cog = new COG();
cog.create();
cog.submit();

catch (Exception e) {
logger.error(“Something went wrong:”, e);

}
}

/cog

Executing a Simple TaskGraph
TaskGraph tg = new TaskGraphImpl();

public void create () {
// define tasks
…..
/* Add the tasks to the TaskGraph */
tg.add(task1);
tg.add(task2);
tg.add(task3);
tg.add(task4);
tg.addDependency(task1, task2);
tg.addDependency(task1, task3);
tg.addDependency(task2, task4);
tg.addDependency(task3, task4);

}

public void submit() {
TaskGraphHandler handler = new TaskGraphHandlerImpl();

try {
handler.submit(tg);

} catch (Exception e) {
logger.error(``Some Error occured'', e);
System.exit(1);

}
}

Task 3

Task 1

Task 2

Task 4

/cog

Create a task
Task task1 = new Task();

JobSpecification spec = new JobSpecificationImpl();
spec.setExecutable(“/bin/ls”);
spec.addArguments(“-la”);
spec.setStdOutput(“output.txt”);

task1.setSpecification(spec);

// bind the task (late binding)

/cog

Status Monitoring
public void statusChanged (StatusEvent event) {

Status status = event.getStatus();

logger.debug(``Status changed to '' +
status.getStatusCode());

if (status.getStatusCode() == Status.COMPLETED) {
logger.info(``Task Done'');

elsif (status.getStatusCode() == Status.FAILED) {
logger.info(``Task Failed'');
System.exit(1);

}
}

Users can design their own
Event handeling logic based
on status changes

/cog

Using the Handler

try {
handler.submit (cog);

} catch (InvalidSecurityContextException ise) {
logger.error(``Security Exception'', ise);
System.exit(1);

} catch (TaskSubmissionException tse) {
logger.error(``TaskSubmission Exception'', tse);
System.exit(1);

} catch (IllegalSpecException ispe) {
logger.error(``Specification Exception'', ispe);
System.exit(1);

} catch (InvalidServiceContactException isce){
logger.error(``Service Contact Exception'', isce);
System.exit(1);

}

Detailed
information
Can be retrieved
if exceptions are
used

/cog

Bind a Task to a Service
Service service = new ServiceImpl(Service.JOB_SUBMISSION);
service.setProvider(``GT3_2_1'');

// Set Security Context – e.g. certificates and such
SecurityContext securityContext =

CoreFactory.newSecurityContext(``GT3_2_1'');
securityContext.setCredentials(null); // e.g. set it to default in ./globus
service.setSecurityContext(securityContext);

// Set Contact – e.g. where to go to
ServiceContact serviceContact =

new ServiceContactImpl(
“http://127.0.0.1:8080/ogsa/services/base/gram/
MasterForkManagedJobFactoryService”);

service.setServiceContact(serviceContact);

task.setService(Service.JOB_SUBMISSION_SERVICE, service);

/cog CoG Kit Desktop

Machine
Icons

Job
Icons Grid

Shell

File
Transfer
GUI

Grid
Log

Native
Icons

/cog Portlets: OGCE.org

/cog

Contributing

You can contribute

We have a module concept allowing
components to be integrated in the
distribution easily

/cog

Conclusion

Programming with CoG abstractions is simple

We envision multiple programming models in CoG

We envision multiple backend services

We can support multiple protocols

We like to engage the community

Contributions:
CA management, Unicore provider, gsissh

These contributions are being integrated.

	The Java CoG Kit
	Funding sources & Acknowledgement
	Community
	Outline
	Introduction
	Observation
	Abstractions
	Result: CoG Kits
	Relationship towards GT
	Relationship to WS-RF
	History
	History (cont.)
	History
	Use of CoG Kits
	Design
	Design
	CoG Kit is more than jglobus
	CoG Abstraction Layers
	Selected Project Components
	Focus on Reusable APIs & Components
	Focus on Abstractions and Patterns
	Java CoG Kit abstractions
	Design
	Design
	Programming with Abstractions
	A simple Programming Pattern
	Executing a Simple TaskGraph
	Create a task
	Status Monitoring
	Using the Handler
	Bind a Task to a Service
	CoG Kit Desktop
	Portlets: OGCE.org
	Contributing
	Conclusion

