
Overview of GT4 Data Services

Bill Allcock, ANL

Ann Chervenak, USC-ISI

Neil P. Chue Hong

GlobusWORLD 2005

Globus Data Services
Talk Outline

Summarize capabilities of the following data services in
the Globus Toolkit Version 4.0
GridFTP
The Reliable File Transfer Service (RFT)

Data movement services for GT4

The Replica Location Service (RLS)
Distributed registry that records locations of data copies

The Data Access and Integration Service (DAIS)
Service to access relational and XML databases

Vision for data services in WS-RF and plans for 2005

GridFTP and
Reliable File Transfer Service (RFT)

Bill Allcock, ANL

What is GridFTP?

A secure, robust, fast, efficient, standards based,
widely accepted data transfer protocol

A Protocol
Multiple Independent implementation can interoperate

This works. Both the Condor Project at Uwis and Fermi Lab
have home grown servers that work with ours.

Lots of people have developed clients independent of the
Globus Project.

The Globus Toolkit supplies a reference
implementation:

Server

Client tools (globus-url-copy)

Development Libraries

GridFTP: The Protocol

FTP protocol is defined by several IETF RFCs

Start with most commonly used subset
Standard FTP: get/put etc., 3rd-party transfer

Implement standard but often unused features
GSS binding, extended directory listing, simple restart

Extend in various ways, while preserving
interoperability with existing servers

Striped/parallel data channels, partial file, automatic &
manual TCP buffer setting, progress monitoring, extended
restart

GridFTP: The Protocol (cont)

Existing standards
RFC 959: File Transfer Protocol

RFC 2228: FTP Security Extensions

RFC 2389: Feature Negotiation for the File
Transfer Protocol

Draft: FTP Extensions

GridFTP: Protocol Extensions to FTP for the Grid
Grid Forum Recommendation

GFD.20

http://www.ggf.org/documents/GWD-R/GFD-R.020.pdf

wuftpd based GridFTP
Existing Functionality

Security
Reliability / Restart
Parallel Streams
Third Party Transfers
Manual TCP Buffer Size
Server Side Processing
Partial File Transfer
Large File Support
Data Channel Caching
Integrated
Instrumentation
De facto standard on the
Grid

New Functionality in 3.2
Server Improvements

Structured File Info
MLST, MLSD

checksum support
chmod support

globus-url-copy changes
File globbing support
Recursive dir moves
RFC 1738 support
Control of restart
Control of DC security

GT4 GridFTP Implementation
100% Globus code. No licensing issues.

GT3.2 Alpha had a very minimal implementation

The latest development release has a very solid alpha.

wuftpd specific functionality, such as virtual domains,
is NOT present

Has IPV6 support included (EPRT, EPSV), but we have
limited environment for testing.

Based on XIO

Extremely modular to allow integration with a variety
of data sources (files, mass stores, etc.)

Striping support is provided in 4.0

Striped Server Mode
Multiple nodes work together *on a single file* and act
as a single GridFTP server

An underlying parallel file system allows all nodes to
see the same file system and must deliver good
performance (usually the limiting factor in transfer
speed)

I.e., NFS does not cut it

Each node then moves (reads or writes) only the pieces
of the file that it is responsible for.

This allows multiple levels of parallelism, CPU, bus, NIC,
disk, etc.

Critical if you want to achieve better than 1 Gbs
without breaking the bank

MODE E
SPAS (Listen)
 - returns list of host:port pairs
STOR <FileName>

MODE E
SPOR (Connect)
 - connect to the host-port pairs
RETR <FileName>

18-Nov-03

GridFTP Striped Transfer

Host Z

Host Y

Host A

Block 1

Block 5

Block 13

Block 9

Host B

Block 2

Block 6

Block 14

Block 10

Host C

Block 3

Block 7

Block 15

Block 11

Host D

Block 4

Block 8 - > Host D

Block 16

Block 12 -> Host D

Host X

Block1 -> Host A

Block 13 -> Host A

Block 9 -> Host A

Block 2 -> Host B

Block 14 -> Host B

Block 10 -> Host B

Block 3 -> Host C

Block 7 -> Host C

Block 15 -> Host C

Block 11 -> Host C

Block 16 -> Host D

Block 4 -> Host D

Block 5 -> Host A

Block 6 -> Host B

Block 8

Block 12

TeraGrid Striping results

Ran varying number of stripes

Ran both memory to memory and disk to
disk.

Memory to Memory gave extremely good
(nearly 1:1) linear scalability.

We achieved 27 Gbs on a 30 Gbs link
(90% utilization) with 32 nodes.

Disk to disk we were limited by the storage
system, but still achieved 17.5 Gbs

Memory to Memory
Striping Performance

BANDWIDTH Vs STRIPING

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70

Degree of Striping

B
an

dw
id

th
 (M

bp
s)

Stream = 1 # Stream = 2 # Stream = 4 # Stream = 8 # Stream = 16 # Stream = 32

Disk to Disk Striping Performance
BANDWIDTH Vs STRIPING

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 10 20 30 40 50 60 70

Degree of Striping

B
an

dw
id

th
 (M

bp
s)

Stream = 1 # Stream = 2 # Stream = 4 # Stream = 8 # Stream = 16 # Stream = 32

New Server Architecture
GridFTP (and normal FTP) use (at least) two
separate socket connections:

A control channel for carrying the commands
and responses
A Data Channel for actually moving the data

Control Channel and Data Channel can be
(optionally) completely separate processes.
A single Control Channel can have multiple
data channels behind it.

This is how a striped server works.
In the future we would like to have a load
balancing proxy server work with this.

New Server Architecture
Data Transport Process (Data Channel) is
architecturally, 3 distinct pieces:

The protocol handler. This part talks to the network and
understands the data channel protocol
The Data Storage Interface (DSI). A well defined API that
may be replaced to access things other than POSIX
filesystems
ERET/ESTO processing. Ability to manipulate the data
prior to transmission.

Not implemented as a separate module for 4.0, but planned for 4.2

Working with several groups to on custom DSIs
LANL / IBM for HPSS
UWis / Condor for NeST
SDSC for SRB

Possible Configurations

Typical Installation Separate Processes

Control Control
Data

Data

Striped Server Striped Server (future)

Control

Data

Control

Data

GridFTP: Caveats

Protocol requires that the sending side do the
TCP connect (possible Firewall issues)

Working on V2 of the protocol
Add explicit negotiation of streams to relax the directionality
requirement above
Optionally adds block checksums and resends
Add a unique command ID to allow pipelining of commands

Client / Server
Currently, no server library, therefore Peer to
Peer type apps VERY difficult
Generally needs a pre-installed server

Looking at a “dynamically installable” server

Extensible IO (XIO) system
Provides a framework that implements a
Read/Write/Open/Close Abstraction
Drivers are written that implement the
functionality (file, TCP, UDP, GSI, etc.)
Different functionality is achieved by building
protocol stacks
GridFTP drivers will allow 3rd party applications to
easily access files stored under a GridFTP server
Other drivers could be written to allow access to
other data stores.
Changing drivers requires minimal change to the
application code.

Reliable File Transfer

Comparison with globus-url-copy
Supports all the same options (buffer size, etc)

Increased reliability because state is stored in a
database.

Service interface
The client can submit the transfer request and then disconnect
and go away

Think of this as a job scheduler for transfer job

Two ways to check status
Subscribe for notifications

Poll for status (can check for missed notifications)

Reliable File Transfer
RFT accepts a SOAP description of the desired
transfer

It writes this to a database

It then uses the Java GridFTP client library to
initiate 3rd part transfers on behalf of the
requestor.

Restart Markers are stored in the database to
allow for restart in the event of an RFT failure.

Supports concurrency, i.e., multiple files in
transit at the same time. This gives good
performance on many small files.

Data Transfer Comparison

RFT Client

Control

Data

Control

Data

Control

Data

Control

Data

globus-url-copy

SOAP
Messages

Notifications
(Optional)

RFT Service

GridFTP and RFT Plans for 2005

GridFTP

Performance, robustness, ease of use

Work on allowing variable stripe width

Work on improving performance on many small files

Access to non-standard backends (SRB, HPSS, NeST)

RFT

Performance, robustness, ease of use

Support for priorities

Support for http, https, file (ala globus-url-copy)

Add support for GridFTP changes resulting from the above

Design, Performance and Scalability
of a Replica Location Service

Ann L. Chervenak

Robert Schuler, Shishir Bharathi

USC Information Sciences Institute

Replica Management in Grids

Data intensive applications produce terabytes or
petabytes of data

Hundreds of millions of data objects

Replicate data at multiple locations for reasons of:

Fault tolerance
Avoid single points of failure

Performance
Avoid wide area data transfer latencies
Achieve load balancing

A Replica Location Service
• A Replica Location Service (RLS) is a distributed

registry that records the locations of data copies and
allows replica discovery

RLS maintains mappings between logical identifiers
and target names
Must perform and scale well: support hundreds of
millions of objects, hundreds of clients

E.g., LIGO (Laser Interferometer Gravitational Wave
Observatory) Project

RLS servers at 8 sites
Maintain associations between 3 million logical file
names & 30 million physical file locations

RLS is one component of a Replica Management system
Other components include consistency services,
replica selection services, reliable data transfer, etc.

LRC LRC LRC

RLIRLI

LRCLRC

Replica Location Indexes

Local Replica Catalogs

RLS Framework

• Local Replica
Catalogs (LRCs)
contain consistent
information about
logical-to-target
mappings

• Replica Location Index (RLI) nodes aggregate information
about one or more LRCs

• LRCs use soft state update mechanisms to inform RLIs
about their state: relaxed consistency of index

• Optional compression of state updates reduces
communication, CPU and storage overheads

• Membership service registers participating LRCs and RLIs
and deals with changes in membership

Replica Location Service In Context

The Replica Location Service is one component in a layered
data management architecture

Provides a simple, distributed registry of mappings

Consistency management provided by higher-level services

Components of RLS Implementation
Common server implementation for
LRC and RLI

Front-End Server
Multi-threaded
Written in C
Supports GSI Authentication using
X.509 certificates

Back-end Server
MySQL or PostgreSQL Relational
Database (later versions support
Oracle)
No database back end required for
RLIs using Bloom filter compression

Client APIs: C and Java
Client Command line tool

DB

LRC/RLI Server

ODBC (libiodbc)

myodbc

mySQL Server

clientclient

RLS Implementation Features
Two types of soft state updates from LRCs to RLIs

Complete list of logical names registered in LRC
Compressed updates: Bloom filter summaries of LRC

Immediate mode
Incremental updates

User-defined attributes
May be associated with logical or target names

Partitioning (without bloom filters)
Divide LRC soft state updates among RLI index
nodes using pattern matching of logical names

Currently, static membership configuration only
No membership service

Alternatives for Soft State
Update Configuration

LFN List
Send list of Logical Names stored on LRC
Can do exact and wildcard searches on RLI
Soft state updates get increasingly expensive as
number of LRC entries increases

space, network transfer time, CPU time on RLI
E.g., with 1 million entries, takes 20 minutes to update
mySQL on dual-processor 2 GHz machine (CPU-limited)

Bloom filters
Construct a summary of LRC state by hashing logical
names, creating a bitmap
Compression
Updates much smaller, faster
Supports higher query rate
Small probability of false positives (lossy compression)
Lose ability to do wildcard queries

Immediate Mode for
Soft State Updates

Immediate Mode
Send updates after 30 seconds (configurable) or after
fixed number (100 default) of updates
Full updates are sent at a reduced rate
Tradeoff depends on volatility of data/frequency of
updates
Immediate mode updates RLI quickly, reduces period of
inconsistency between LRC and RLI content

Immediate mode usually sends less data
Because of less frequent full updates

Usually advantageous
An exception would be initially loading of large
database

Performance Testing
Extensive performance testing reported in HPDC 2004
paper

Performance of individual LRC (catalog) or RLI (index)
servers

Client program submits operation requests to server
Performance of soft state updates

Client LRC catalogs sends updates to index servers

Software Versions:
Replica Location Service Version 2.0.9
Globus Packaging Toolkit Version 2.2.5
libiODBC library Version 3.0.5
MySQL database Version 4.0.14
MyODBC library (with MySQL) Version 3.51.06

Testing Environment

Local Area Network Tests
100 Megabit Ethernet
Clients (either client program or LRCs) on cluster:
dual Pentium-III 547 MHz workstations with 1.5
Gigabytes of memory running Red Hat Linux 9
Server: dual Intel Xeon 2.2 GHz processor with 1
Gigabyte of memory running Red Hat Linux 7.3

Wide Area Network Tests (Soft state updates)
LRC clients (Los Angeles): cluster nodes
RLI server (Chicago): dual Intel Xeon 2.2 GHz
machine with 2 gigabytes of memory running Red
Hat Linux 7.3

LRC Operation Rates (MySQL Backend)
Operation Rates,

LRC with 1 million entries in MySQL Back End,
Multiple Clients, Multiple Threads Per Client,

 Database Flush Disabled

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Number Of Clients

O
pe

ra
tio

ns
 P

er

se
co

nd

Query Rate w ith 10 threads per client
Add Rate w ith 10 threads per client
Delete Rate w ith 10 threads per client

• Up to 100 total
requesting
threads

• Clients and
server on LAN

• Query: request
the target of a
logical name

• Add: register a
new <logical
name, target>
mapping

• Delete a
mapping

Comparison of LRC to
Native MySQL Performance

Operation Rates for MySQL Native Database,
1 Million entries in the mySQL back end,

Multiple Clients, Multiple Threads Per Client,
Database flush disabled

0
500

1000
1500
2000
2500
3000
3500
4000

1 2 3 4 5 6 7 8 9 10

Number of Clients

O
pe

ra
tio

ns
 p

er

se
co

nd

Query Rate w ith 10 threads per client
Add Rate w ith 10 threads per client
Delete Rate w ith 10 threads per client

LRC Overheads

Highest for
queries: LRC
achieve 70-80%
of native rates

Adds and deletes:
~90% of native
performance for
1 client (10
threads)

Similar or better
add and delete
performance with
10 clients (100
threads)

Bulk Operation Performance
For user convenience,
server supports bulk
operations

E.g., 1000 operations
per request

Combine adds/deletes
to maintain approx.
constant DB size

For small number of
clients, bulk operations
increase rates

E.g., 1 client
(10 threads) performs
27% more queries,
7% more adds/deletes

Bulk vs. Non-Bulk Operation Rates,
1000 Operations Per Request,
10 Request Threads Per Client

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

Number of clients

O
pe

ra
tio

n
R

at
es

Bulk Query
Bulk Add/Delete
Non-bulk Query
Non-bulk Add
Non-bulk Delete

Bloom Filter Compression

Construct a summary of each LRC’s state by hashing
logical names, creating a bitmap
RLI stores in memory one bitmap per LRC

Advantages:
Updates much smaller, faster
Supports higher query rate

Satisfied from memory rather than database

Disadvantages:
Lose ability to do wildcard queries, since not sending
logical names to RLI
Small probability of false positives (configurable)

Relaxed consistency model

Bloom Filter Performance:
Single Wide Area Soft State Update

(Los Angeles to Chicago)

LRC
Database
Size

Avg. time to
send soft
state update
(seconds)

Avg. time for
initial bloom
filter
computation
(seconds)

Size of bloom
filter (bits)

100,000
entries

Less than 1 2 1 million

1 million
entries

1.67 18.4 10 million

5 million
entries

6.8 91.6 50 million

Scalability of
Bloom Filter Updates

Average Time to Perform
Continuous Bloom Filter Updates From

Increasing Number of LRC Clients

0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of LRC Clients

A
ve

rg
e

C
lie

nt

U
pd

at
e

Ti
m

e

14 LRCs with 5 million mappings send Bloom filter updates
continuously in Wide Area (unlikely, represents worst case)
Update times increase when 8 or more clients send updates
2 to 3 orders of magnitude better performance than
uncompressed (e.g., 5102 seconds with 6 LRCs)

Bloom Filter Compression
Supports Higher RLI Query Rates

RLI Bloom Filter Query rate,
Each Bloom Filter has 1 Million Mappings,
Multiple Clients with 3 Threads per Client

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10

Number of Clients

A
ve

ra
ge

 Q
ue

ry
 ra

te

Query Rate w ith 3 threads per client. 1 Bloom filter at RLI
Query Rate w ith 3 threads per client. 10 Bloom filters at RLI
Query Rate w ith 3 threads per client. 100 Bloom filters at RLI

• Uncompressed
updates: about
3000 queries per
second

• Higher rates
with Bloom filter
compression

• Scalability
limit: significant
overhead to
check 100 bit
maps

• Practical
deployments:
<10 LRCs
updating an RLI

WS-RF Data Publishing
and Replication Service

Being developed for the Tech Preview of GT4.0 release
Based in part on Lightweight Data Replicator system
(LDR) developed by Scott Koranda from U. Wisconsin at
Milwaukee

Ensures that a specified set of files exist on a storage
site

Compares contents of a local file catalog with a list of
desired files
Transfers copies of missing files other locations
Registers them in the local file catalog

Uses a pull-based model
Localizes decision making
Minimizes dependency on outside services

Publishing and Replication Service (Cont.)
WS-RF interface allows a client to explicitly specify the
list of files that should exist at the local site

associates priorities with files should they need to be
replicated from another site
allows clients to remove files from this list

Each storage site uses the Replica Location Service
(RLS) to determine

what files from the desired set are missing from the local
storage system
where missing files exist elsewhere in the Grid

Missing files are replicated locally
Issue requests to pull data to the local site from remote
copies using the Reliable File Transfer Service (RFT)

After files are transferred, they are registered in the
Local Replica Catalog

RLS Plans for 2005

Ongoing RLS scalability testing

Incorporating RLS into production tools, such as POOL
from the physics community

Developing publishing tool that uses RLS that is loosely
based on the LDR system from the LIGO project

Will be included in GT4.0 release as a technical preview

Investigating peer-to-peer techniques

OREP Working Group of the Global Grid Forum working
to standardize a web services (WS-RF) interface for
replica location services

WS-RF implementation planned for 2005

OGSA-DAI
Data Access and Integration for the Grid

Neil Chue Hong
EPCC, The University of Edinburgh

N.ChueHong@epcc.ed.ac.uk
http://www.ogsadai.org.uk

OGSA-DAI in a Nutshell

All you need to know
about OGSA-DAI in a
handy pocket sized
presentation!

OGSA-DAI Motivation

Entering an age of data
Data Explosion

CERN: LHC will generate 1GB/s = 10PB/y
VLBA (NRAO) generates 1GB/s today
Pixar generate 100 TB/Movie

Storage getting cheaper
Data stored in many different ways

Data resources
Relational databases
XML databases
Flat files

Need ways to facilitate
Data discovery
Data access
Data integration

Empower e-Business and e-Science
The Grid is a vehicle for achieving this

Goals for OGSA-DAI

Aim to deliver application mechanisms that:
Meet the data requirements of Grid applications

Functionality, performance and reliability
Reduce development cost of data centric Grid applications
Provide consistent interfaces to data resources

Acceptable and supportable by database providers
Trustable, imposed demand is acceptable, etc.
Provide a standard framework that satisfies standard
requirements

A base for developing higher-level services
Data federation
Distributed query processing
Data mining
Data visualisation

Integration Scenario

A patient moves hospital

DB2 Oracle CSV
file

A: (PID, name, address, DOB) B: (PID, first_contact) C: (PID, first_name, last_name,
address, first_contact, DOB)

Data A Data B

Data C

Amalgamated patient record

Why OGSA-DAI?
Why use OGSA-DAI over JDBC?

Language independence at the client end
Do not need to use Java

Platform independence
Do not have to worry about connection technology and drivers

Can handle XML and file resources
Can embed additional functionality at the service end

Transformations, Compression, Third party delivery
Avoiding unnecessary data movement

Provision of Metadata is powerful
Usefulness of the Registry for service discovery

Dynamic service binding process

The quickest way to make data accessible on the Grid
Installation and configuration of OGSA-DAI is fast and
straightforward

Core features of OGSA-DAI
An extensible framework for building applications

Supports relational, xml and some files
MySQL, Oracle, DB2, SQL Server, Postgres, XIndice, CSV, EMBL

Supports various delivery options
SOAP, FTP, GridFTP, HTTP, files, email, inter-service

Supports various transforms
XSLT, ZIP, GZip

Supports message level security using X509
certificates
Client Toolkit library for application developers
Comprehensive documentation and tutorials

Third production release on 3 December 2004
OGSI/GT3 based
Also previews of WS-I and WS-RF/GT4 releases

OGSA-DAI Services
OGSA-DAI uses three main service types

DAISGR (registry) for discovery

GDSF (factory) to represent a data resource

GDS (data service) to access a data resource
ac

ce
ss

es

represents
DAISGR GDSF GDS

Data
Resource

locates creates

Activities are the drivers
Express a task to be performed by a GDS
Three broad classes of activities:

Statement
Transformations
Delivery

Extensible:
Easy to add new functionality
Does not require modification to the service interface
Extension operate within the OGSA-DAI framework

Functionality:
Implemented at the service
Work where the data is (do not require to move data
back)

OGSA-DAI Deck

Activities and Requests

A request contains a set of activities

An activity dictates an action to be
performed

Query a data resource

Transform data

Deliver results

Data can flow between activities

HTML
data

web rowset
data

SQL
Query

Statement

Deliver
ToURL

XSLT
Transform

Delivery Methods

Web Server

GDS

GridFTP server Local
Filesystem

FTP
server

DeliverFromURL

DeliverTo/FromURL

DeliverTo/FromGFTP

DeliverTo/FromFile

DeliverTo/FromStream

DeliverTo/FromSMTP

Client Toolkit

Why? Nobody wants to write XML!

A programming API which makes writing
applications easier

Now: Java

Next: Perl, C, C#?, ML!?

// Create a query
SQLQuery query = new SQLQuery(SQLQueryString);
ActivityRequest request = new ActivityRequest();
request.addActivity(query);

// Perform the query
Response response = gds.perform(request);

// Display the result
ResultSet rs = query.getResultSet();
displayResultSet(rs, 1);

Data Integration Scenario

GDS2 GDS3
Relational
Database

Relational
Database

GDS1
Relational
Database

Client
select +

output stream

select +
output stream

deliver

deliver

deliver from GDT
bulk load

join tables

Release 5

Release 5.0 on 3 December 2004
Builds on GT3.2.1
Highlights include:

indexing, reading and full-text searching across files
using the Apache Lucene text search engine library

e.g. SWISSPROT and OMIM

command line and graphical wizards to simplify
installation, testing and configuration
per-activity configuration, defined in the activity
configuration file
getNBlocks operation in GDT port type
Notification activity
bulk load for XML:DB databases

Project classification

OGSA-DAI
Biological
Sciences

Physical
Sciences

Commercial
Applications

Computer
Sciences

• FirstDig

• INWA

• Bridges • AstroGrid

• BioSimGrid
• BioGrid

• eDiamond
• myGrid

• ODD-Genes

• N2Grid

• GEON

• MCS

• IU RGBench

• OGSA Web-DB

• GeneGrid

• GridMiner

Distributed Query Processing

Higher level services
building on OGSA-DAI

Queries mapped to
algebraic expressions for
evaluation

Parallelism represented
by partitioning queries

Use exchange operators

table_scan
(protein)

table_scan
termID=S92
(proteinTerm)

reduce

reduce

hash_join
(proteinId)

op_call
(Blast)

reduce

exchange

exchange

3,4

1 2

Resources for OGSA-DAI Users

Users Group
A separate independent body to engage with users
and feedback to developers

Chair: Prof. Beth Plale of Indiana University

Twice-yearly meetings

OGSA-DAI users mailing list
users@ogsadai.org.uk

See http://www.ogsadai.org.uk/support/list.php

OGSA-DAI tutorials
Coming soon … (Q1 at NeSC, elsewhere?)

Further information

The OGSA-DAI Project Site:
http://www.ogsadai.org.uk

The DAIS-WG site:
http://forge.gridforum.org/projects/dais-wg/

OGSA-DAI Users Mailing list
users@ogsadai.org.uk
General discussion on grid DAI matters

Formal support for OGSA-DAI releases
http://www.ogsadai.org.uk/support
support@ogsadai.org.uk

OGSA-DAI training courses

OGSA DAI Plans for 2005

Transition to new platforms and standards
WS-RF (GT4), WS-I+ (OMII)
Alignment with published DAIS specifications

Data Integration
Implement simple patterns (e.g. AND, OR,
PREFERRED, PARTIAL) within service code
Tighter integration of relational, XML and other
resources
Better performance for inter-service data transfer

Releases, support and community
Releases provisionally in April and September
Seek contributions in various areas of new
architecture
Moving forward to new versions of OGSA-DAI

Summary of
Globus Data Services and

Plans for 2005

GridFTP

A secure, robust, fast, efficient, standards based,
widely accepted data transfer protocol

3rd-party transfers
Striped/parallel data channels
Partial file transfers
Progress monitoring
Extended restart

Plans for 2005
Performance, robustness, ease of use
Work on allowing variable stripe width
Work on improving performance on many small files
Access to non-standard backends (SRB, HPSS,
NeST)

RFT

Reliable File Transfer Service
WS-RF service
Accepts a SOAP description of the desired transfer
Writes this to a database (saves state, allows restart)
Uses Java GridFTP client library to initiate 3rd part
transfers on behalf of the requestor
Supports concurrency, i.e., multiple files in transit at
the same time

Plans for 2005
Performance, robustness, ease of use
Support for priorities
Support for http, https, file (ala globus-url-copy)
Add support for GridFTP changes resulting from the
above

RLS

Replica Location Service
Distributed registry
Records the locations of data copies
Allows replica discovery

Plans for 2005
Ongoing RLS scalability testing
Incorporating RLS into production tools, such as
POOL from the physics community
Developing publishing tool for GT4.0 release as a
technical preview
Investigating peer-to-peer techniques
WS-RF implementation planned for 2005

OGSA DAI

Data Access and Integration Service
An extensible framework for building applications
Supports relational, xml and some files
Supports various delivery options and transforms
Supports message level security using X509
certificates

Plans for 2005
Transition to new platforms and standards
Data Integration

Implement simple patterns within service code
Tighter integration of relational, XML and other
resources
Better performance for inter-service data transfer

	Overview of GT4 Data Services
	Globus Data Services Talk Outline
	GridFTP and Reliable File Transfer Service (RFT)
	What is GridFTP?
	GridFTP: The Protocol
	GridFTP: The Protocol (cont)
	wuftpd based GridFTP
	GT4 GridFTP Implementation
	Striped Server Mode
	TeraGrid Striping results
	Memory to MemoryStriping Performance
	Disk to Disk Striping Performance
	New Server Architecture
	New Server Architecture
	Possible Configurations
	GridFTP: Caveats
	Extensible IO (XIO) system
	Reliable File Transfer
	Reliable File Transfer
	Data Transfer Comparison
	GridFTP and RFT Plans for 2005
	Design, Performance and Scalability of a Replica Location Service
	Replica Management in Grids
	A Replica Location Service
	Replica Location Service In Context
	Components of RLS Implementation
	RLS Implementation Features
	Alternatives for Soft State Update Configuration
	Immediate Mode for Soft State Updates
	Performance Testing
	Testing Environment
	LRC Operation Rates (MySQL Backend)
	Comparison of LRC to Native MySQL Performance
	Bulk Operation Performance
	Bloom Filter Compression
	Bloom Filter Performance: Single Wide Area Soft State Update (Los Angeles to Chicago)
	Scalability of Bloom Filter Updates
	Bloom Filter Compression Supports Higher RLI Query Rates
	WS-RF Data Publishing and Replication Service
	Publishing and Replication Service (Cont.)
	RLS Plans for 2005
	OGSA-DAIData Access and Integration for the Grid
	OGSA-DAI in a Nutshell
	OGSA-DAI Motivation
	Goals for OGSA-DAI
	Integration Scenario
	Why OGSA-DAI?
	Core features of OGSA-DAI
	OGSA-DAI Services
	Activities are the drivers
	OGSA-DAI Deck
	Activities and Requests
	Delivery Methods
	Client Toolkit
	Data Integration Scenario
	Release 5
	Project classification
	Distributed Query Processing
	Resources for OGSA-DAI Users
	Further information
	OGSA DAI Plans for 2005
	Summary of Globus Data Services and Plans for 2005
	GridFTP
	RFT
	RLS
	OGSA DAI

