ВЫХОД ФРАГМЕНТОВ ⁸Ве ПРИ ФРАГМЕНТАЦИИ ¹⁰В С ЭНЕРГИЕЙ 1 ГэВ НА НУКЛОН В ЭМУЛЬСИИ

© 2005 г. Ф. Г. Лепехин^{*}, Б. Б. Симонов

Петербургский институт ядерной физики РАН, Гатчина Поступила в редакцию 09.02.2005 г.

Показано, что оценка доли канала ${}^{10}\text{B} \rightarrow {}^8\text{Be} \rightarrow 2\alpha$ составляет $(18 \pm 3)\%$, а константы распределения по углу α -частицы и углу между ними, равные 20.5 ± 0.7 и 31.7 ± 2.0 мрад соответственно, согласуются с расчетами этих величин, сделанными до эксперимента на основе существующих представлений о предельной фрагментации релятивистских ядер.

1. ВВЕДЕНИЕ

Ядерные фотоэмульсии, облучаемые на нуклотроне ЛВЭ ОИЯИ различными легкими ядрами, позволяют исследовать кластерную структуру этих ядер [1–3]. Настоящая работа, выполняемая в рамках Сотрудничества BECQUEREL, имела своей целью получить количественные характеристики процесса образования α-кластеров в ядре ¹⁰В.

Эмульсионная камера, облученная ионами ¹⁰В с энергией 10 ГэВ, как нельзя лучше подходит для этой цели. Сравнительно небольшой импульс первичной частицы приводит к тому, что углы вылета вторичных релятивистских фрагментов оказываются довольно большими — 10—30 мрад. Они достаточно точно могут быть измерены в фото-эмульсии.

Ядро ¹⁰В имеет спин 3 и положительную четность. По представлениям оболочечной модели его структура имеет вид $(1s)^4(1p_{3/2})^6$, т.е. четыре нуклона заполняют 1*s*-оболочку, а следующая оболочка заполнена не полностью, так как для нее полное число нуклонов равно восьми [4]. Наглядно ядро ¹⁰В можно представить как ⁸Be + ²H или ⁸Be + ¹H + *n*. Мы увидим, что эти каналы фрагментации ядра ¹⁰В действительно имеют большие вероятности наблюдения в сравнении с другими каналами фрагментации. Таким образом, можно ожидать, что α -частичная структура ядра ¹⁰В в эксперименте должна проявляться.

Распад ⁸Ве $\rightarrow 2\alpha$ можем происходить только из состояний 0⁺ или 2⁺. Действительно, в [5] установлено, что основным состоянием ядра ⁸Ве является состояние 0⁺, а первое возбужденное состояние с энергией 2.9 МэВ есть состояние 2⁺. Распады из

этих состояний мы и можем наблюдать. Конечно, при фрагментации ядер 10 В будут наблюдаться и события с двумя α -частицами, вылетающими из него независимо друг от друга, без образования связанного состояния.

В первом разд. 2 рассмотрен вопрос о том, по какому критерию эти два типа событий могут быть отделены друг от друга, какими должны быть характеристики двух классов событий и сколько их должно наблюдаться в нашей экспериментальной выборке. В разд. 3 показано, каким образом все это может быть определено в эксперименте и согласуется ли он с расчетом, сделанным в разд. 2.

2. ПРЕДЕЛЬНАЯ ФРАГМЕНТАЦИЯ ЯДЕР ¹⁰В

Экспериментальные данные, полученные при изучении фрагментации различных релятивистских ядер при энергиях от 1 до 200 ГэВ на нуклон и ядермишеней при различных энергиях, согласуются с преставлениями о том, что процесс испускания фрагментов является быстрым и ядро остается холодным. Даже при сравнительно небольших энергиях релятивистских ядер оказывается справедливой гипотеза предельной фрагментации [6].

Существенно, что, хотя гипотеза предельной фрагментации для адрон-адронных взаимодействий была сформулирована для бесконечного импульса, в ядро-ядерных взаимодействиях она оказывается справедливой и при сравнительно небольшом импульсе на нуклон первичного ядра. Исходя их этих представлений можно предсказать количественные характеристики угловых и импульсных распределений фрагментов ядер в ядроядерных взаимодействиях для любых комбинаций и энергий сталкивающихся ядер, а также долю тех событий, в которых образование двух α -частиц при фрагментации ядра ¹⁰В идет через канал ⁸Ве $\rightarrow 2\alpha$.

^{*}E-mail: lepekhin@pnpi.spb.ru

Для этого необходимо знать только величину граничного импульса Ферми, известного из экспериментов по рассеянию электронов на ядрах [7]. Но импульс Ферми для ядра ¹⁰В в эксперименте [7] не определялся. Его можно получить, если предположить, что фазовый объем ядра в основном состоянии есть произведение обычного его объема, определяемого радиусом ядра $R = r_0 A^{1/3}$, на объем в пространстве импульсов, определяемый граничным импульсом Ферми $P_{\rm F} = \sqrt{5}\sigma_0$. Величина σ_0^2 есть дисперсия импульсного распределения нуклонов в ядре ¹⁰В до его взаимодействия с ядром в фотоэмульсии. В каждом элементе этого объема ћ, согласно принципу Паули, могут находиться только четыре нуклона. В [8] показано, что $r_0 \sigma_0 =$ = 134.4 МэВ/с Фм. При константе $r_0 = 1.54$ Фм, известной из эксперимента [9] по определению радиуса ядра ¹⁰В, получаем, что импульс Ферми для него должен быть равен 195.2 МэВ/с, откуда следует, что величина, определяющая распределение импульсов нуклонов в ядре 10 В, равна $\sigma_0 =$ $= 87.3 \text{ M} \cdot \text{B}/c.$

Параболический закон Гольдхабер [10] устанавливает зависимость дисперсии σ_F^2 импульсного распределения любого фрагмента с массовым числом A_F из любого ядра с массовым числом A_0 от дисперсии импульсного распределения нуклонов в этом ядре σ_0^2 :

$$\sigma_F^2 = \sigma_0^2 \frac{A_F(A_0 - A_F)}{A_0 - 1}.$$
 (1)

Используя этот закон, а также имея в виде, что

$$P_{\perp} = A_F P_0 \operatorname{tg} \theta, \qquad (2)$$

где $P_0 = 1.7 \text{ МэВ/}c$ — это импульс на нуклон ядра ¹⁰В в нашем эксперименте, получим, что константа $\sigma(\theta)$, определяющая распределение углов θ вылета α -частиц, должна быть равна 21.0 мрад. Распределение таких углов должно следовать распределению Рэлея с этой константой. А распределение углов между парой частиц θ_{12} в одном событии при независимом разлете частиц должно следовать этому же распределению, но с дисперсией, в 2 раза большей, чем дисперсия распределения одиночных частиц.

Угол θ_{12} между следами частиц в событии должен быть выборкой из распределения Рэлея с константой, равной $\sigma(\theta_{12}) = \sqrt{2}\sigma(\theta) = 29.7$ мрад [11]. Отношение среднего поперечного импульса частиц в л.с. к среднему поперечному импульсу в с.ц.и. двух частиц должно быть равно $\sqrt{2}$.

Средний угол между двумя частицами при независимом их разлете в нашем эксперименте должен быть равен:

$$|\theta_{12}\rangle = \sqrt{p/2}\sigma(\theta_{12}) = 37.2$$
 мрад. (3)

В нашем эксперименте углы вылета определяются по двум углам, равным углам между проекциями импульса на две взаимно перпендикулярные плоскости — на плоскость эмульсии (угол φ) и на плоскость, перпендикулярную к ней (угол α). Если в каждом событии две частицы вылетают независимо друг от друга и оба угла φ и α каждой частицы являются случайными выборками из нормального распределения с одной и той же дисперсией, то дисперсия суммы четырех таких углов в каждом событии должна быть равна четырем дисперсиям распределения этих углов и поэтому

$$\sigma(\varphi_1 + \varphi_2 + \alpha_1 + \alpha_2) = 2\sigma(\theta). \tag{4}$$

Простейшей характеристикой двухчастичных корреляций частиц в поперечной плоскости является коэффициент азимутальной асимметрии A, определяемый как разность вероятности наблюдения разности азимутальных углов двух частиц $\Delta \Psi$, больших и меньших чем 90°:

$$A = \frac{N(\Delta\Psi > 90^\circ) - N(\Delta\Psi < 90^\circ)}{N(\Delta\Psi > 90^\circ) + N(\Delta\Psi < 90^\circ)}.$$
 (5)

При независимом испускании частиц этот коэффициент должен быть равен нулю. Распределение по углам $\Delta \Psi$ между векторами поперечных импульсов двух частиц в событии в таком случае должно быть равномерным. При распаде возбужденной системы на n частиц по фазовому объему, когда векторная сумма поперечных импульсов всех частиц в каждом событии равна нулю, неизбежно возникают кинематические корреляции в поперечной плоскости [12]. Коэффициент азимутальной асимметрии A в этом случае должен быть равен 1/(n-1). При фрагментации ядра ¹⁰В полное число частиц n не может быть настолько велико, чтобы величина A не отличалась бы от нуля.

При распаде ⁸Ве на две α -частицы, если ⁸Ве испущено из ¹⁰В, все разности азимутальных углов двух частиц должны быть меньше 90°. Коэффициент азимутальной асимметрии *А* для этих событий должен быть близок к -1. Это нам и предстоит проверить.

Теперь посмотрим, что будет, если события с двумя α -частицами в нашем эксперименте идут через распад ⁸Ве $\rightarrow 2\alpha$. Предположим, что процесс испускания ⁸Ве ядром ¹⁰В идет как обычная фрагментация. Тогда поперечные импульсы ядра ⁸Ве будут следовать распределению Рэлея, константу которого легко вычислить, зная импульс Ферми ядра ¹⁰В. Продольный импульс ядра ⁸Ве практически не изменится и будет равен 8 $P_0 = 13.6$ ГэВ/с. Значит, направление и импульс ядра, распадающегося

ЯДЕРНАЯ ФИЗИКА том 68 № 12 2005

Рис. 1. Распределение углов θ_{12} между следами α частиц при распаде ⁸Ве из ядра ¹⁰В с импульсом 1.7 ГэВ/с для 2500 событий, разыгранных по методу Монте-Карло. N — число событий на интервал $\Delta \theta_{12} =$ = 0.5 мрад.

на лету на две *а*-частицы, нам известны. Кинетическая энергия каждой *α*-частицы в системе покоя распадающегося ядра равна 45.96 кэВ. Угловое распределение α-частиц в с.ц.и распадающегося ядра ⁸Ве полагаем изотропным. Разыграв по методу Монте-Карло угол частицы в системе покоя ядра ⁸Ве, получаем импульс α-частицы в л.с. и находим угол между частицами в каждом из событий. Моделированное таким образом распределение углов между частицами приведено на рис. 1. Резкий максимум в вероятности наблюдения этих углов при $\theta_{12} = 5.45$ мрад имеем за счет того, что телесный угол при разлете двух α -частиц под углом 90° в с.ц.и. распадающегося ядра значительно больше телесного угла при разлете их под нулевым углом с направлением импульса распадающегося ядра. При увеличении энергии первичной частицы форма этого распределения сохранится, но предельный угол станет меньше.

Таким образом, распределения углов между двумя α -частицами при их независимом разлете из ядра ¹⁰В и при разлете из промежуточного основного состояния ⁸Ве резко различаются. Это и дает возможность отделить события, идущие по каналу ¹⁰В \rightarrow ⁸Be \rightarrow 2 α + all, от событий, идущих по каналу ¹⁰В \rightarrow 2 α + all. Теперь посмотрим, как можно оценить долю каналов с ⁸Be.

Следуя процедуре, описанной в [13], будем счи-

ЯДЕРНАЯ ФИЗИКА том 68 № 12 2005

тать, что каждый из фрагментов с зарядом Z_i и массовым числом A_i соответствует стабильному или радиоактивному изотопу, точная величина массы которого известна. Чтобы из начального состояния первичного ядра ¹⁰В перейти на какоето время τ в состояние из данных k фрагментов в с.ц.и. этого ядра, необходимо затратить некоторую энергию ΔE_k . Эта энергия будет состоять не только из разности суммы масс покоя всех фрагментов и массы первичного ядра, но еще из суммы средних кинетических энергий всех фрагментов в их с.ц.и. Средние же энергии фрагментов, зная импульс Ферми, можно легко вычислить.

Время пребывания в виртуальном состоянии τ будет тем меньше, чем больше энергия ΔE_k , а вероятность застать первичное ядро в виртуальном состоянии с дефицитом энергии ΔE_k будет тем больше, чем больше время τ .

Строгое математическое обоснование вычисления этой вероятности дает теория динамических систем [14]. В ней доказывается, что если последовательность состояний системы инвариантна по отношению к сдвигу по времени, то для множества этих состояний всегда можно ввести инвариантную нормированную гиббсовскую меру, которая по своей сути есть не что иное, как вероятность наблюдения этого состояния:

$$W(T, \Delta E_k) = \frac{\exp(-\Delta E_k/T)}{\Xi}.$$
 (6)

Это хорошо известное распределение Гиббса, где $T = \sigma_0^2/m_N -$ температура, т.е. величина, пропорциональная средней энергии конституентов, а $\Xi -$ статистическая сумма, равная сумме выражений в числителе по всем возможным k состояниям.

Для легких ядер перечислить все возможные состояния первичного ядра не представляет труда. Для ядра ¹⁰В число всех возможных каналов фрагментации равно 73. После прямого вычисления статистической суммы находим абсолютные вероятности всех каналов фрагментации. Наиболее вероятным оказывается канал фрагментации ядра $^{10}B \rightarrow ^{4}He + ^{6}Li$ (19.73%), а следующий за ним по вероятности будет интересующий нас канал фрагментации на ⁸Ве и дейтрон (16.36%). Список первых 13 каналов, по убыванию вероятности, приведен в табл. 1. Каналы с большим числом фрагментов, конечно, оказываются маловероятными. Суммарная вероятность испускания ⁸Ве из ядра ¹⁰В оказывается равной 19.7%.

Итак, выход ядер ⁸Ве при фрагментации ядер ¹⁰В должен быть не мал. Доля событий с двумя двухзарядными частицами при фрагментации ядер ¹⁰В должна быть, по грубой оценке, около 20% от всех событий, в которых сумма зарядов вторичных фрагментов равна заряду первичного ядра. Доля

Ν	W, %	Канал фрагментации	
1	19.73	$^{4}\mathrm{He}+^{6}\mathrm{Li}$	
2	16.36	$^{2}\mathrm{H}+^{8}\mathrm{Be}$	
3	15.29	$p + {}^{9}\text{Be}$	
4	12.19	$n + {}^{9}\mathrm{B}$	
5	8.80	$^{5}\mathrm{He}+^{5}\mathrm{Li}$	
6	4.43	$^{2}\mathrm{H}+2^{4}\mathrm{He}$	
7	3.83	$^{3}\mathrm{He}+^{7}\mathrm{Li}$	
8	3.43	$^{3}\mathrm{H}+^{7}\mathrm{Be}$	
9	3.37	$n + p + {}^{8}\text{Be}$	
10	3.02	$p + {}^{4}\mathrm{He} + {}^{5}\mathrm{He}$	
11	2.65	$n + {}^{4}\text{He} + {}^{5}\text{Li}$	
12	0.91	$n + p + 2 {}^4\text{He}$	
13	0.76	$^{3}\mathrm{H} + ^{3}\mathrm{He} + ^{4}\mathrm{He}$	

Таблица 1. Вероятности каналов W фрагментации ядра $^{10}\mathrm{B}$

таких событий среди всех событий, найденных по следу, в эксперименте [1] оказалась равной 10%.

3. ЭКСПЕРИМЕНТ

В данном эксперименте эмульсионная камера, состоящая из слоев эмульсии размером 10×20 см и толщиной 500 мкм, была облучена на нуклотроне ЛВЭ ОИЯИ пучком ионов ¹⁰В с энергией 10 ГэВ вдоль слоя. Поиск событий осуществлялся просмотром по следу. Суммарная длина всех участков просмотренных первичных следов до неупругого взаимодействия с ядрами в фотоэмульсии или до выхода из слоя равна 243 м. На этой длине найдено 1823 неупругих взаимодействия. Таким образом, средний пробег до взаимодействия равен 13.3 ± 0.3 см. В 217 событиях, содержащих два двухзарядных фрагмента ядра ¹⁰В, были измерены координаты x, y, z в 11 точках через 100 мкм по оси ОХ на обоих следах двухзарядных фрагментов и на следе первичной частицы. Если средние значения координат равны $\langle x \rangle$, $\langle a \rangle$, где a = y, z, то оценка тангенса угла $\varepsilon = \varphi$ (при a = y) или тангенса угла $\varepsilon = \alpha$ (при a = z) будет равна:

$$\operatorname{tg} \varepsilon = \frac{\langle xa \rangle - \langle x \rangle \langle a \rangle}{\langle x^2 \rangle - \langle x \rangle^2}.$$
 (7)

Вычислив углы φ и α для данного следа, получим оценку тангенса угла θ :

$$\operatorname{tg} \theta = \sqrt{\operatorname{tg}^2 \varphi + \operatorname{tg}^2 \alpha}.$$
 (8)

Ошибка измерения угла между частицами в интервале 3–8 мрад оказалась около 1.5 мрад. Таким образом, в интересующей нас области углов между α -частицами (порядка 5 мрад) точность наших измерений вполне достаточна для того, чтобы установить наличие интересующего нас явления распада ⁸Ве на две α -частицы из основного состояния, если считать, что события с углами $\theta_{12} < 8.5$ мрад как раз и относятся к этому каналу.

Несмотря на то что точности измерения координат по осям OY и OZ различны, параметры распределений углов φ и α оказались практически одинаковыми. Оба распределения, как и ожидалось, согласуются с гипотезой выборки их из нормального распределения с константой, вычисленной из радиуса ядра ¹⁰В.

На рис. 2 приведены функция ожидаемого нормального распределения углов частиц со средним, равным нулю, и стандартным отклонением 21 мрад, вычисленным из величины константы для радиуса ядра ¹⁰В (кривая), и эмпирические функции распределения углов φ и α , полученные в эксперименте. Обратим внимание, что кривая на рис. 2 не есть подгонка экспериментальных распределений этих углов — она была получена до проведения эксперимента.

Сумма квадратов разностей по вертикали между кривой и эмпирической функцией распределения дает величину ω^2 (критерий Крамерса—Мизеса), которая может быть использована для проверки гипотезы согласия эмпирической функции распределения с нормальным распределением. По нашим данным, на 1%-ном доверительном уровне, эта гипотеза принимается для углов как φ , так и α .

Этот результат находится в полном согласии с тем, что был получен в работе [1]. Там экспериментальная величина среднего поперечного импульса дейтронов равна $140 \pm 10 \text{ МэB}/c$, а если оценить ее из величины $r_0 = 1.54 \text{ Фм}$, то она должна быть равна 145 МэB/c. Как видим, это неплохое согласие.

Величина $c = \varphi_1 + \varphi_2 + \alpha_1 + \alpha_2$ для данной выборки событий распределена нормально, со стандартным отклонением $\sigma_c = 39.7 \pm 2.7$ мрад. Таким образом, угловые корреляции частиц в событии не обнаруживаются в эксперименте.

Но тогда вполне естественно, что распределение углов θ хорошо согласуется с гипотезой их выборки из распределения Рэлея. Это означает, что и распределение углов $\theta_{12} = x$ между парами α -частиц при независимом их разлете должно иметь плотность распределения

$$f(x,\sigma) = \frac{x}{\sigma_2} \exp(-x^2/2\sigma^2)$$
(9)

и функцию распределения

$$F(x,\sigma) = 1 - \exp(-x^2/2\sigma^2).$$
 (10)

ЯДЕРНАЯ ФИЗИКА том 68 № 12 2005

Рис. 2. Функция ожидаемого нормального распределения (кривая) и эмпирические функции распределения углов $\varphi(*)$ и $\alpha(\circ)$.

Для оценки параметра σ этого распределения из эксперимента надо исключить углы θ_{12} меньше некоторой величины x_{\min} , так как мы ищем небольшое превышение над этим распределением в области именно малых углов θ_{12} за счет каналов, содержащих ⁸Ве $\rightarrow 2\alpha$. Надо исключить и углы θ_{12} больше некоторой величины x_{\max} , так как там могут быть редкие события совсем другой природы, например перерассеяние частиц в конечном состоянии. Тогда функция правдоподобия для распределения Релея, обрезанного слева и справа, будет иметь вид

$$L = \prod_{i=1}^{i=N} f(x_i, \sigma) F(x_{\min}, \sigma) [1 - F(x_{\max}, \sigma)].$$
(11)

Чтобы найти оценку интересующего нас параметра σ , надо решить нелинейное уравнение, которое получится, если приравнять к нулю производную от логарифма написанной функции правдоподобия. Результат достигается применением соответствующей процедуры из библиотеки МАТНСАD-8 [15].

ЯДЕРНАЯ ФИЗИКА том 68 № 12 2005

Зависимость логарифма функции правдоподобия от параметра σ приведена на рис. 3. Максимум L для данной выборки достигается при $\sigma = 31.7 \pm \pm 2.0$ мрад. По рис. 3 можно судить и о величине доверительного интервала оценки параметра. Таким образом, экспериментальная оценка параметра распределения угла между двумя частицами, при исключении из выборки углов между ними от распада ⁸Be $\rightarrow 2\alpha$, практически совпадает с ожидаемой величиной этого параметра при независимом разлете двух частиц.

Так как в эксперименте мы имеем в основном периферические взаимодействия первичных ядер с ядрами в фотоэмульсии, то импульс, переданный первичному ядру как целому, мал. Переданный поперечный импульс еще делится между вторичными фрагментами в соответствии с их массами, и поэтому в эксперименте мы его практически не видим.

Коэффициент азимутальной асимметрии для всех событий в эксперименте равен 0.05 ± 0.03 , а для событий с $\theta_{12} < 8.5$ мрад он оказался равным -0.96 ± 0.04 . Это означает, что для всех событий

N	Величина	Расчет	Эксперимент
1	$\langle P_{\perp} \rangle (^{2}\mathrm{H}) [\mathrm{M} \mathfrak{i} \mathrm{B}/c]$	145	$140 \pm 10 [1]$
2	$\sigma(arphi)=\sigma(lpha)$ [мрад]	21.011	20.5 ± 0.7
3	$\sigma(\mathrm{Rel}, heta_{12})$ [мрад]	29.714	31.7 ± 2.0
4	$\langle heta_{12} angle$ [мрад]	37.22	34.6 ± 2.2
5	$\sigma(arphi_1+arphi_2+lpha_1+lpha_2)$ [мрад]	42.0	39.7 ± 2.7
6	$N(heta_{12} < 8.5$ мрад)	36	33
7	$W(^8\mathrm{Be} \to 2lpha)$	0.197	0.18 ± 0.03
8	$A(^{10}\mathrm{B} \to 2lpha)$	0	0.05 ± 0.03
9	$A(^8{ m Be} ightarrow 2lpha)$	-1.0	-0.96 ± 0.04
10	$\langle heta_{12} angle$ для $ heta_{12} < 8.5$ мрад	6.3	5.6 ± 1.0
11	Коэфф. <i>D</i> по Колмогорову	1.63	0.32
12	Коэфф. V по Куиперу	2.0	0.88
13	ω^2 -Критерий	0.743	0.304

Таблица 2. Вычисленные и экспериментальные значения различных величин, характеризующих фрагментацию ядра ¹⁰В

корреляции направлений поперечных импульсов отсутствуют, а для событий, связанных с распадом ${}^8\text{Be} \to 2\alpha$, такие корреляции велики.

Наконец, в эксперименте наблюдаются 33 события с углом $\theta_{12} < 8.5$ мрад (вместо ожидаемых 36). Это означает, что в данном эксперименте ве-

Рис. 3. Зависимость логарифма функции правдоподобия от параметра σ . Горизонтальная линия, проведенная через точку $\ln L = -1$, если спроектировать точки ее пересечения с кривой на ось абсцисс, дает величину доверительного интервала параметра на доверительном уровне 68.3%.

роятность наблюдения ядра 8 Ве при фрагментации ядра 10 В равна (18 \pm 3)%, при ожидаемой 19.7% в расчете.

Если наблюдаемые нами события с $\theta_{12} < 8.5$ мрад действительно генерируются каналом $^{8}\text{Be} \rightarrow 2\alpha$, то эмпирическая функция распределения углов θ_{12} данных 33 событий должна совпадать с предполагаемой функцией распределения этих углов в указанном канале. Плотность распределения таких углов приведена на рис. 1.

Для проверки этой гипотезы использовались три непараметрических критерия согласия. Критерий согласия Колмогорова [16] состоит в том, что максимальное отклонение D эмпирической функции распределения от предполагаемой теоретической функции при их согласии на 1%-ном уровне значимости не может превышать 1.63. В эксперименте D = 0.32.

Второй, более сильный, но редко используемый экспериментаторами критерий Куипера [17] связан с величиной $V = V^+ - V^-$, равной разности между двумя функциями распределения в одну и в другую сторону. Критическое значение его на том же доверительном уровне есть 2.0. В эксперименте V = 0.88. Аналогичный результат получен и при использовании третьего, уже упоминавшегося критерия Крамерса—Мизеса (см. табл. 2)

Таким образом, по всем трем критериям согласия гипотеза о том, что наша выборка из 33 углов $\theta_{12} < 8.5$ мрад имеет функцию распределения

ЯДЕРНАЯ ФИЗИКА том 68 № 12 2005

Рис. 4. Эмпирическая функция распределения $F(x) = F(\theta_{12} < x)$ 33 углов (\circ) и предполагаемая функция распределения углов θ_{12} в процессе ⁸ Ве $\rightarrow 2\alpha$ (точки).

углов между частицами в процессе ⁸Be $\rightarrow 2\alpha$, не отвергается, это иллюстрируется на рис. 4.

4. ЗАКЛЮЧЕНИЕ

Основные результаты данной работы суммированы в табл. 2. Все предсказания, полученные априори, экспериментально подтверждены. Выход фрагментов ⁸Ве при фрагментации релятивистского ядра ¹⁰Ве с энергией 10 ГэВ действительно составляет около 2% от всех событий, найденных по следу в фотоэмульсии, или около 20% от тех событий, в которых сумма зарядов вторичных фрагментов равна заряду первичного ядра.

Индивидуальные события, содержащие две частицы от распада ⁸Ве в продуктах фрагментации релятивистских ядер, в этом эксперименте обнаружены впервые. При фрагментации релятивистских ядер углерода и кислорода с импульсом 4.1 ГэВ/*с* на нуклон на три и четыре двухзарядных фрагмента [18, 19] наблюдаемые в эксперименте особенности распределений азимутальных углов

ЯДЕРНАЯ ФИЗИКА том 68 № 12 2005

между фрагментами хорошо согласуются с расчетами доли ядер ⁸Ве в них [20] – она оказалась равной $\simeq 30\%$. Вероятно, что в легких ядрах с хорошо выраженной *α*-частичной структурой эти частицы образуют бозе-конденсат и резонансно взаимодействуют друг с другом, поэтому мы видим ядро ⁸Ве. А так как время жизни этого промежуточного состояния велико в сравнении с ядерным временем, то в звездах, когда водород сгорает и концентрация гелия увеличивается, оно начинает играть важную роль в нуклеосинтезе. В частности, через поглощение нейтрона образуется изотоп ⁹Ве, по концентрации которого в звездах шаровых скоплений впервые экспериментально был определен возраст нашей Галактики [21]. Таким образом, экспериментальные данные о выходе ядер ⁸Ве при фрагментации легких ядер могут быть востребованы.

Конечно, результаты, приведенные в табл. 2, получены при многих явных и неявных предположениях и могут быть истолкованы только как косвенное их доказательство. Так, можно считать, что импульс Ферми ядра 10 В действительно равен 195 МэВ/с, а константа импульсного распределения нуклонов в этом ядре — около 90 МэВ/с. Атомное ядро действительно можно рассматривать как динамическую систему, и все общие закономерности теории динамических систем к нему применимы. Это дает возможность сделать предсказания, которые, как мы видели, эксперимент подтверждает.

Термодинамический формализм содержится в теории динамических систем. Поэтому обычно используемый язык термодинамики с понятиями энергии возбуждения ядра, температуры возбужденного ядра и т.д. вполне пригоден для феноменологического описания явления фрагментации. Однако за десятилетия использования этого формализма до сих пор еще не удалось с его помощью получить какие-либо предсказания. Очевидно, что дальнейшие исследования процесса фрагментации ядер надо в основном направить на поиски отклонений от предсказаний этой простой картины фрагментации ядер. Теперь, когда мы представляем эту картину в общих чертах, можно углубиться в ее детали.

Авторы выражают благодарность Сотрудничеству BECQUEREL за облучение эмульсии и предоставление возможности выполнения работы, ЛВЭ ОИЯИ за прекрасную химическую обработку эмульсии, Л.Н. Ткач за просмотр и измерение событий, использованных в этой работе.

СПИСОК ЛИТЕРАТУРЫ

- 1. М. И. Адамович и др., ЯФ **67**, 533 (2004).
- 2. V. Bradnova *et al.*, 9 Φ 66, 1694 (2003).
- М. И. Адамович и др., Письма в ЭЧАЯ, № 2 [177], 29 (2003).

- 4. А. С. Давыдов, *Теория атомного ядра* (Физматгиз, Москва, 1958), с. 607.
- 5. J. A. Wheeler, Phys. Rev. 59, 16 (1941).
- J. Benecke, T. T. Chou, C. N. Yang, and E. Yen, Phys. Rev. 188, 2159 (1969); Р. Фейнман, Взаимодействие фотонов с адронами (Мир, Москва, 1975), с. 381.
- 7. E. J. Moniz et al., Phys. Rev. Lett. 26, 445 (1971).
- 8. F. G. Lepekhin, D. M. Seliverstov, and B. B. Simonov, Eur. Phys. J. A **1**, 137 (1998).
- 9. Дж. Блатт, В. Вайскопф, *Теоретическая ядерная* физика (ИЛ, Москва, 1954), с. 653.
- 10. J. S. Goldhaber, Phys. Lett. B 53, 306 (1974).
- Ф. Г. Лепехин, Б. Б. Симонов, Письма в ЖЭТФ 58, 493 (1993).
- С. А. Азимов и др., Множественные процессы при высоких энергиях (ФАН УзССР, Ташкент, 1976), с. 120.
- Ф. Г. Лепехин, Письма в ЭЧАЯ, № 3 [112], 25 (2002).
- 14. Я. Г. Синай, *Динамические системы-2* (ВИНИТИ, Москва, 1985), т. 2, с. 306.
- 15. В. Дьяконов, *МАТНСАD 8/2000: специальный справочник* (Питер, С.-Петербург, 2001), с. 582.
- 16. W. T. Eadie *et al.*, *Statistical Methods in Experimental Physics* (North-Holland, Amsterdam, London, 1971).
- 17. К. Мардиа, Статистический анализ угловых наблюдений (Наука, Москва, 1978), с. 236.
- 18. В. В. Белага и др., ЯФ **59**, 869 (1996).
- 19. Ф. А. Аветян и др., ЯФ **59**, 110 (1996).
- F. G. Lepekhin, O. V. Levitskaya, and B. B. Simonov, *PNPI Research Report 1998–1999* (PNPI, Gatchina, 2000), p. 165; Preprint No. 2313, PNPI (Gatchina, 1999).
- European Southern Obsevatory, Press Release 20/04 (http://www.eso.org/outreach/press-rel/pr-2004/pr-20-04.html).

YELDS OF ⁸Be FRAGMENTS IN THE ¹⁰B FRAGMENTATION IN PHOTOEMULSION AT AN ENERGY OF 1 GeV PER NUCLEON

F. G. Lepekhin, B. B. Simonov

It is shown that the channel fraction ${}^{10}B \rightarrow {}^{8}Be \rightarrow 2\alpha$ is estimated to be $(18 \pm 3)\%$ and the constants of the distribution over the α -particle angle and over the angle between two α -particles equal to 20.5 ± 0.7 and 31.7 ± 2.0 mrad, respectively, are in agreement with the calculations carried prior to the experiment on the basis of the limiting fragmentation of relativistic nuclei.