

Прецизионное измерение зарядового радиуса протона в эксперименте по упругому рассеянию электрона на протоне

Петербургский институт ядерной физики; Institute for Nuclear Physics, University of Mainz, Germany

Electron beam (working position)

Electron beam (calibration position)

Проверено 40 bar, 25 раз

Рабочее давление 20 bar

Проверено отсутствие неупругих деформаций при циклировании на 40 bar

Коэффициент запаса прочности 2 на 20 bar

юсти : 2.35

ности : 2,91 ul

aca npo

оэфф. запаса прочности : 7,5 ul

Козфф. запаса прочности : 2,07 ul Козфф. запаса прочности : 3,12 ul Козфф. запаса прочности : 1,93 ul

23.12.2021

FT состоит из 3-4 пар пропорциональных камер с катодным съемом.

Каждая камера имеет зазор анод-катод 3 мм.

Чувствительная область камеры $600 \times 600 \text{ mm}^2$ (Octagon).

Чтение осуществляется с точного и неточного катода.

Анод состоит из 30 µm проволок с шагом 3 mm.

Обе катодные плоскости состоят из 50 µm проволок с шагом 0.5 mm.

На точном катоде 2.5 mm стрипы сформированы из 5-и объединенных проволок.

На неточном катоде

Ожидается получить пространственное разрешение ~30 µm resolution.

Пространственная шкала на пропорциональных камерах должна иметь линейность не хуже ~0.02%. (600 мм х 0.02% =120 µm)

Монтаж пропорциональной камеры для испытаний Бочин Б.В. – создатель камеры

Подключение электроники

Испытания пропорциональной камеры

Readout. Разработка П.В. Неустроева и ОРЭ.

«Сертификация» линейности шкалы. Измерение натяжения проволок.

Моделирование электрического поля, COMSOL

Стабилизация положения электронного пучка. Камера Грачева В.Т.

Пропроциональная камера 8 проволок, шаг 2 mm Токовый режим с 3-5 s интегрированием

Ar+CO₂+CF₄ газовая смесь

Система считывания Кравцов П.А. Трофимов В.А.

Наша цель: стабилизировать центр Тяжести пучка ±50 µm

Compressors and gas system

GB-30 for gas evacuation (15-30 nl/min)

Model No.	Maximum Material Rated Gas Supply Pressure (Ps)	Maximum Material Rated Gas Outlet Pressure (Po)	A Inlet Port B Outlet Port	Static Outlet Stall Pressure	Minimum Inlet Gas Pressure (Ps)	Displacement Per Stroke (in3 per cycle)
GB-15	2,250 psig	2,250 psig	1/4" NPT	15 Pa	50 psig (3.5 bar)	7.05
	155 bar	155 bar	1/4" NPT			
GB-30	4,500 psig	4,500 psig	1/4" NPT	30 Pa	100 psig (7 bar)	3.1
	310 bar	310 bar	1/4" NPT			
GB-75	6,000 psig	11,250 psig	9/16"-18 (1)	75 Pa	250 psig (17 bar)	1.2
	410 bar	775 bar	9/16"-18 (1)			

23.12.2021

Detector house (old version). Very-very preliminary

Рельсовая система

Размещение экспериментальной установки в зале A2 ускорителя MAMI, Mainz University

- Первая половина 2022
- Середина 2022
- Осень 2022

- Осень 2022

Сборка и окончательные тесты детектора Транспортировка системы в Майнц Первичная сборка корпуса детектора на пучке в зале А2. Сдача системы на безопасность. Сборка чистой комнаты для работы с FT и TPC.

(желательно совмещение с предыдущим пунктом)
Тестовый run по проводке,
стабилизации и измерении
интенсивности электронного пучка
Первая половина 2023
Первый тестовый run эксперимента «Протон»

- 1. 4 stations of proportional chambers 2-X and 2-Y, 8 wires for each with the step 2 mm
- 2. 4 stations are assembled into one block mechanically attached to the rear flange of the main detector
- 3. Proportional chambers are working in the current mode with some integration time.
- 4. 32 channel readout will be done by PNPI (P. Kravtsov) and on base of Gaussian fitting X and Y coordinate will be translated to the Accelerator Department for beam center stabilization

Our aim:

To have beam center stability better then $\pm 50 \ \mu m$

We do not know:

- 1. Velocity of the electron beam drift
- 2. Time constant of magnet elements for beam correction
- 3. Integration time for beam detector

We have to solve these tasks during next run at MAMI!

Suppression of hydrogen flux in case of Be destruction

Cutoff valve in case of Be window destruction

23.12.2021

A. Vasilyev

Valve closing time

