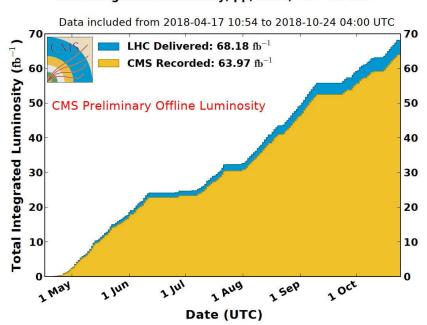
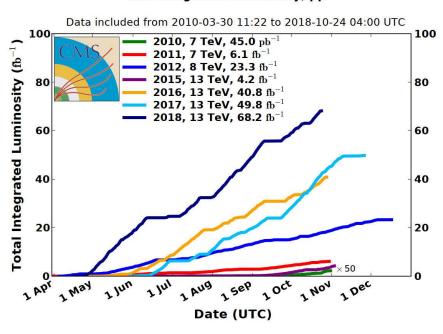
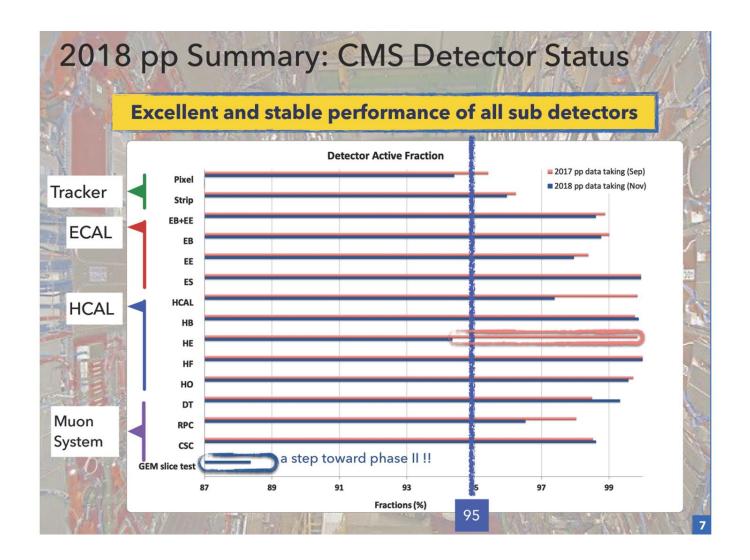


НАУЧНОЙ СЕССИИ ОФВЭ 24-27 декабря 2018

Эксперимент CMS CTATYC

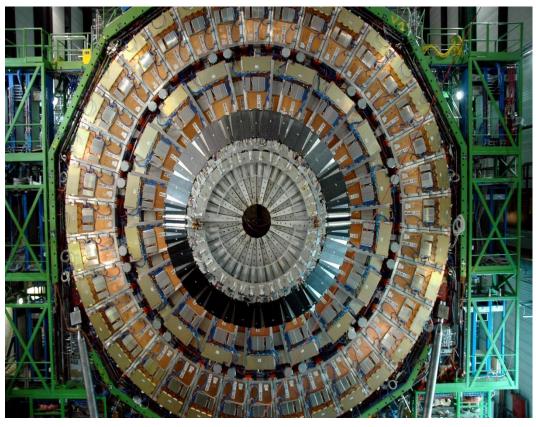

В. Сулимов

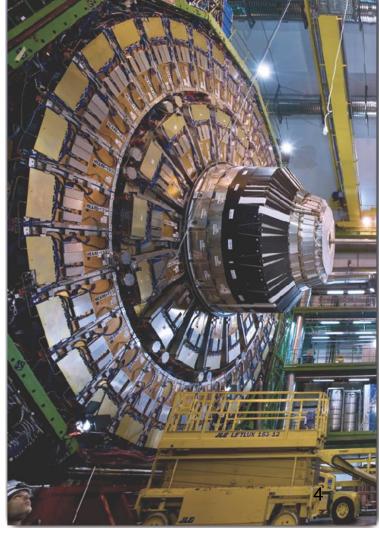

CMS Luminosity 2018



CMS Integrated Luminosity, pp, 2018, $\sqrt{s} = 13 \text{ TeV}$

CMS Integrated Luminosity, pp





Торцевая мюонная система (EMU CSC)

Status Muon Subsystem

ME1/1 72 1.5×0.5 m²

ME1/2 72 1.6×0.8 m²

ME1/3 72 1.7×0.9m²

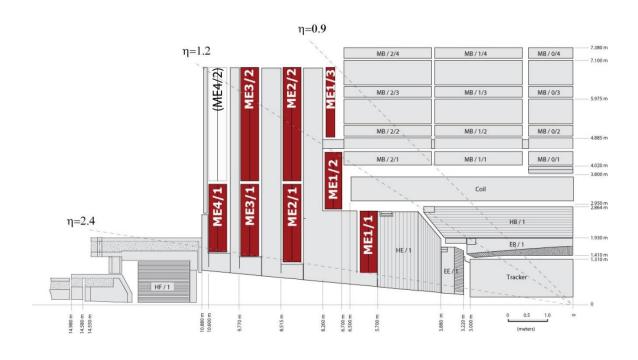
ME 2/1 36 1.9×1.25 m²

ME3/1 36 1.7×1.25 m²

ME4/1 36 1.5×1.25m²

ME2/2 72 3.2×1.3m²

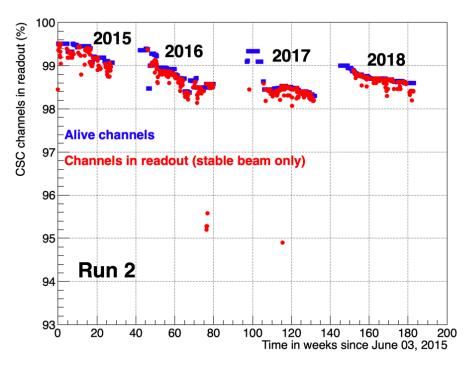
ME3/2 72 3.2×1.3m²


ME4/2 72 3.2×1.3m²

540 CSCs (cover about 6000 m²)

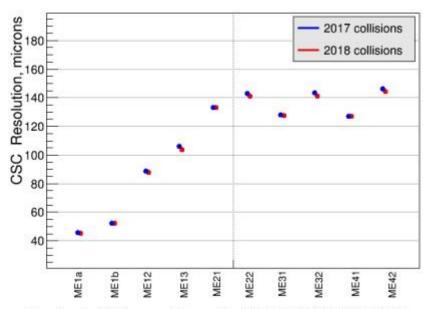
2.5 10**6 anode wires

210816 anode readout channels


273024 cathode readout channels

Run2 CSC

Эффективность EMU CMS во времени. Красными точками показан процент работающих каналов.

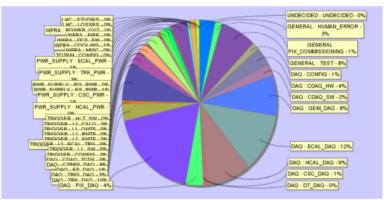

CSC Spatial Resolution 2017/2018

Spatial resolution per station (µm):

Station	Collision dataset Run2			
		ZMu	ZMu	
ME1/1a	46	45		
ME1/1b	53	52		
ME1/2	89	88		
ME1/3	106	105		
ME2/1	133	133		
ME2/2	143	141		
ME3/1	128	127		
ME3/2	143	141		
ME4/1	127	127		
ME4/2	146	145		

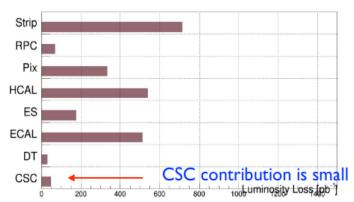
Values are normalized to atm.pressure 965 mbar

For basic CSC gas mixture: Ar+CO2+CF4 (40/50/10%)


Downtime in 2018

Overall performance

Caused 1.3% of the total CMS downtime

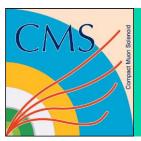

Again, better than 2016 and 2017

CSC downtime events:

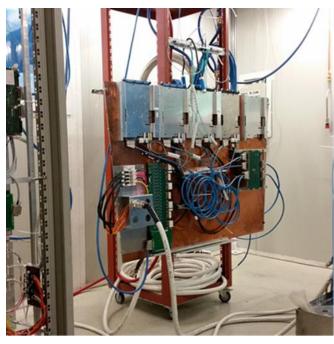
- LV supply x 2 (both in Station 1)
- CCB not configured
- Failed to configure in global
- Human error

DAQ was not down, but DCS certified sub-detector "bad"

UF/PNPI HV system



Master boards

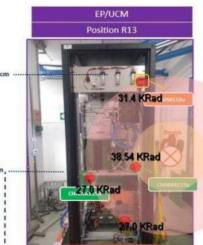


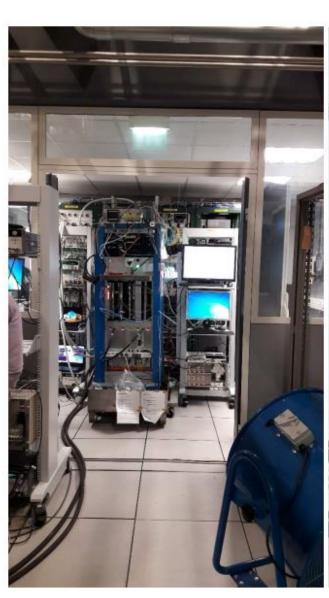
Разработка новой системы HV для ME1/1 в основном завершена. Эта пользовательская система UF / PNPI заменит существующую систему CAEN и обеспечит лучшую производительность и надежность для будущей работы на HL-LHC. Заново сконструированные основной модуль (Master Board) и 32 канальный распределитель (Distribution board, 32 channels) успешно были испытаны и откалибрированы в B904, используя для проверки камеру ME1/1. Несколько компонентов интеграции (патч-панель) изготавливаются, и новая система должна быть готова к установке на P5 (USC) в начале 2019 года.

R-test FEB

CHARM (CERN High energy AcceleRator Mixed field) - это новый и уникальный испытательный комплекс, который позволяет моделировать радиационные условия на ускорителях ЦЕРНа.

R-test FEB

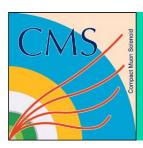

Radiation Testing: CHARM October 2018


Up to 38.7 kRad

- adapter board + VTTx mounted on DCFEB: passes STEP tests
- standalone adapter board: passes optical test
- ALCT mezzanine passes tests
- LVDB5 passed

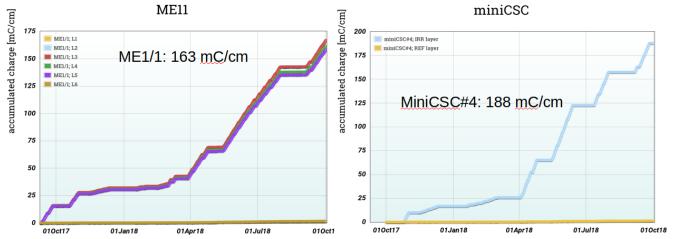
Investigating:

- failure of ALCT base board (18 kRad)
 - ▶ fuse and ADC + Op amps used in monitoring
- control of LVMB getting stuck (29 kRad)
 - ightharpoonup safety factor 10 (10 yrs of HL-LHC pprox 3 kRad):

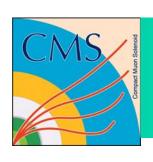


Gas studies

Вследствие принятия Европейским Союзом в 2014 году регламента о фторсодержащих газах, ЦЕРН проводит поиск технологических решений направленных на сокращение выброса фторсодержащих газов, обладающих значительным потенциалом глобального потепления. Наряду с усовершенствованием уже действующих систем рекуперации таких газов, активно изучается вопрос об уменьшении их использования в установках действующих экспериментов, в частности СМS.



GIF++ operational since April. The 13.9 TBq137Cs source is ~19 times stronger than the old GIF one (0.76 TBq). Attenuation filters allow a wide variation of the γ-flux. A muon beam is available.H4.



После успешного завершения изучения времени жизни CSC камер типа «ME1/1» и «ME2/1» работающих с номинальной газовой смесью $40\%Ar+50\%CO_2+10\%CF_4$, в октябре 2017 года был начат второй этап облучения камеры «ME1/1» и малого прототипа камеры «ME2/1» с газовой смесью $40\%Ar+58\%CO_2+2\%CF_4$. В рамках теста проводилось регулярное мониторирование основных характеристик (темновых счетных характеристик, темновых токов, относительных и абсолютных коэффициентов газового усиления и величин межстриповых сопротивлений) в зависимости от накопленного заряда.

Накопленный заряд облучаемых камер «ME1/1» и прототипа CSC, облучаемых с 40%Ar+58%CO2+2%CF4 газовой смесью на установке GIF++ с октября 2017 года к моменту последних измерений с мюонным пучкам в октябре 2018 года.

<u>Изучение характеристик регистрируемых мюонных сигналов в условиях высоких</u> <u>загрузок с номинальной и альтернативной газовых смесей.</u>

Три сеанса измерений с мюонным пучком, проведенные за 2018 год, использовались не только для мониторирования характеристик облученных камер, но и в рамках изучения работы камер в условиях высоких загрузок и для отладки усовершенствованного кода триггерной электроники камер (Optimized Trigger Motherboard, OTMB). В этих измерениях нейтронный фон, соответствующий высоким светимостям HL-LHC, эмулировался гамма-излучением источника GIF++. Набор фильтров источника позволяет получать загрузки камер, соответствующие диапазону светимостей от режима LHC до HL-LHC и выше. Использование стандартной считывающей электроники на камерах позволяет напрямую исследовать эффективность триггера и сбора данных при различных загрузках, а также эффективность и пространственное разрешение реконструируемых мюонных треков в зависимости от величины фона и накопленного заряда.

CMS Shifts

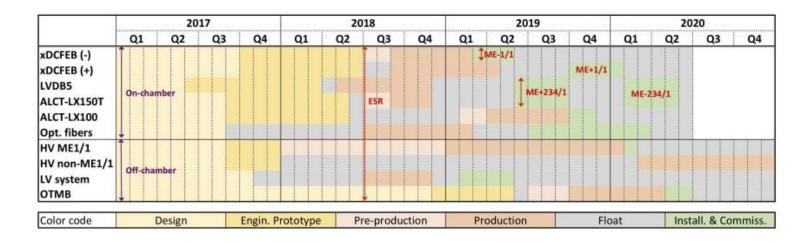
Участие специалистов ПИЯФ в CMS сменах. В 2018 году специалисты ПИЯФ участвовали в сменах:

```
• Центральные смены:
```

• (DCS) - 50 смен, 68 (баллов)

• (Trigger) – 16 смен, 22.5 (баллов)

• CSC DQM смены: (CSC DQM) - 28 смен, 32 (баллов)

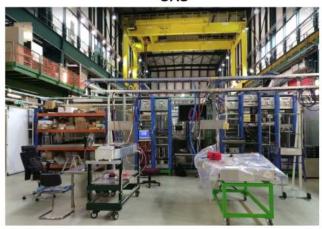

• Сумма: 94 смены, 122.5 баллов

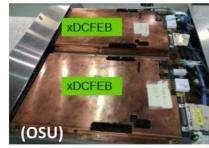
CSC upgrade during LS2

Schedule

ME1/1 periods:

- replace DCFEBs with xDCFEBs
- replace ALCT mezzanines
- refurbish old DCFEBs (B867)


ME234/1 periods:


- replace CFEBs with refurbished DCFEBs
- replace LVDBs
- replace ALCT mezzanines

LS2 has just started

Overall excellent progress and no show stopper indicate we should be on schedule for March 2019

05/12/2017 AL GMM CMS week Dec 4, 2018

12

UXC-USC: System infrastructure & services (LV, JB, HV, CANbus, gas system)

- Dismount present JBs and install new JBs
- Install and cable additional LV Maraton supply
- Commission new LV system
- Expand DCS CANbus network
- Maintenance work on HV system
- Gas leak test CSC after installation
- Commission gas system
- Upgrade LV services in USC (OPFC)
- · Provide support for cabling

25.12.2018 21

BACKUP

.

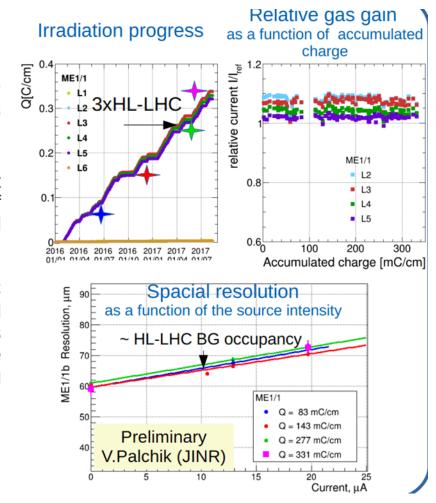
Gas studies

New regulations on greenhouse gas emission could hit us as soon as 2025 (40% reduction) and 2050 (100%).

A number of possible candidates for replacing CF₄were proposed Collaborators at PNPI have began investigating properties of such gases when used in Ar+CO₂ based gas mixtures

Molecular name	Chemical formula	CAS	Refrigerant identifier	GWP	Life time in atmosphere, years
CarbonDioxide	CO ₂	124-38-9	R744	1	50-200
Tetrafluoromethane	CF ₄	75-73-0	R14	7390	50000
Trifluoroiodomethane	CF ₃ I	2314-97-8	R13I	0	<1
Hexafluoroethane	C ₂ F ₆	76-16-4	R116	12200	10000
Octafluoropropane	C ₃ F ₈	76-19-7	R218	8830	7000
Octafluorocyclobutane	C-C 4 F 8	115-25-3	RC318	10300	3000

All these gases are used for dry plasma etching primarily related to silicon technology in microelectronics .•


CF3I has comparable Si-etching properties as CF4. So it is a good candidate

Studies with the nominal gas mixture were completed in August after 18 months of irradiation

- Both irradiated chambers did not demonstrate any noticeable change of performance up to the accumulated charge of 3 x HL-LHC expectations.
- Beam test measurements proved CSC muon detection performance to be well adequate for the HL-LHC conditions even though some performance degradation was observed for increasing background intensity.

