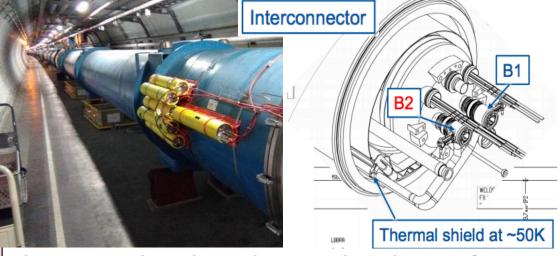
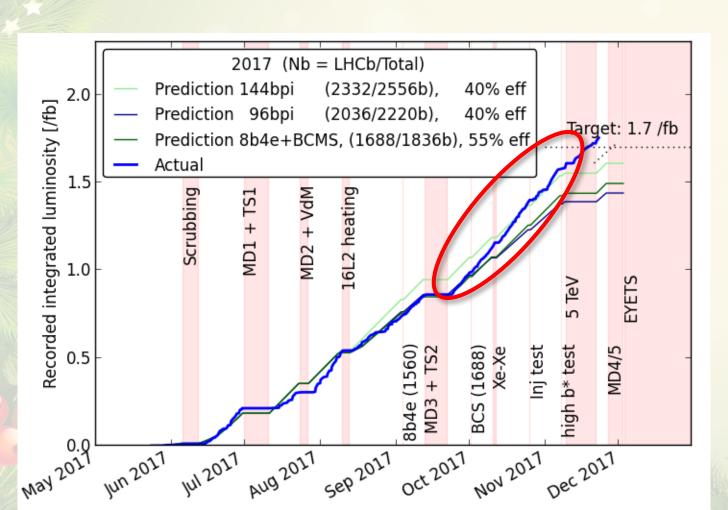

• Цель по светимости — 1.7 фб⁻¹ в 2017 году — достигнута!



2332 сталкивающихся банча протонов, эффективность LHC ~40%

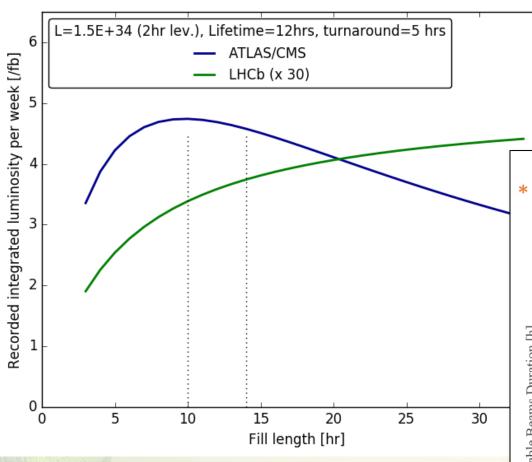
• Август — проблема с сектором"16L2" Уменьшили число сгустков протонов:

2332 → 1500 = -35%



The current best hypothesis is that there is frozen $N_{2,}$ and O_2 on the beam screen. Flakes of these can be moved into the beam due to their magnetic properties especially when the magnetic fields are changing during the ramp. A solid flake in the beam leads to losses and instabilities.

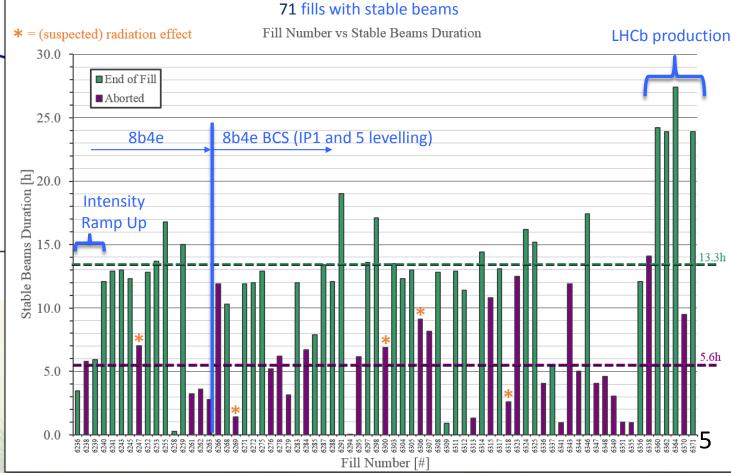
At the moment it is thought that e-cloud or synchrotron radiation do not play an important role in the mechanism.


• Сентябрь – конфигурация пучка "8b4e" – 8 bunches 4 empty (slots)

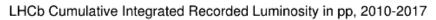
Меньшее количество сгустков:

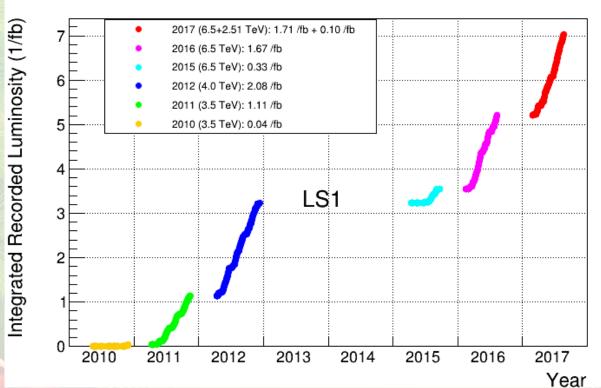
2332 → 1749 = -25%

Большая эффективность:

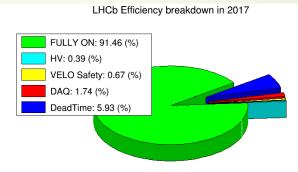


В конце года LPC пошли навстречу LHCb, увеличив длину рабочего цикла LHC


Изменение набранной светимости, при увеличении длины рабочего цикла 10 ч → 14ч:


➤ ATLAS/CMS: -3.5%

➤ LHCb: +10.5%


- Запуск 2017 года успешно завершен
- Набрано > 7.0 фб⁻¹ (run1 + run2 + 5 TeV)

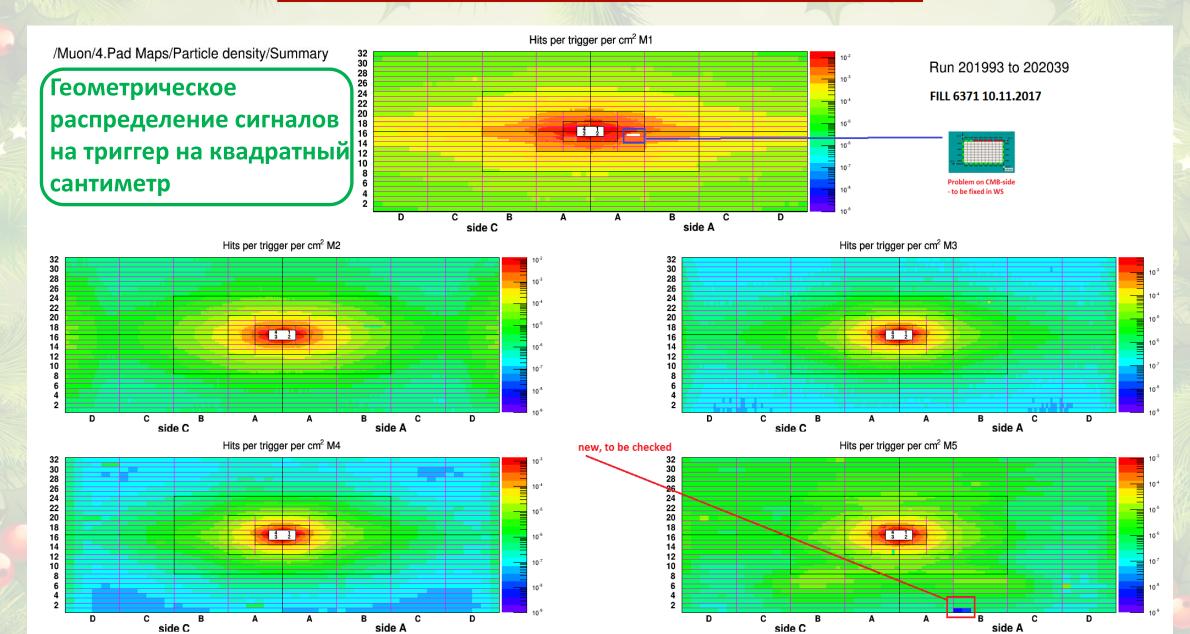
	Recorded Lumi (pb ⁻¹)		Delivered Lumi (pb ⁻¹)	
2011	1.11		1.22	
2012	2.08		2.20	
Run-1		3.2		3.4
2015	0.33		0.36	
2016	1.67		1.88	
2017 (5TeV)	1.71 (0.10)		1.86 (0.11)	
Run-2		3.7		4.0
Total		6.9		7.4

• Детектор работает очень хорошо, эффективность набора данных > 91%

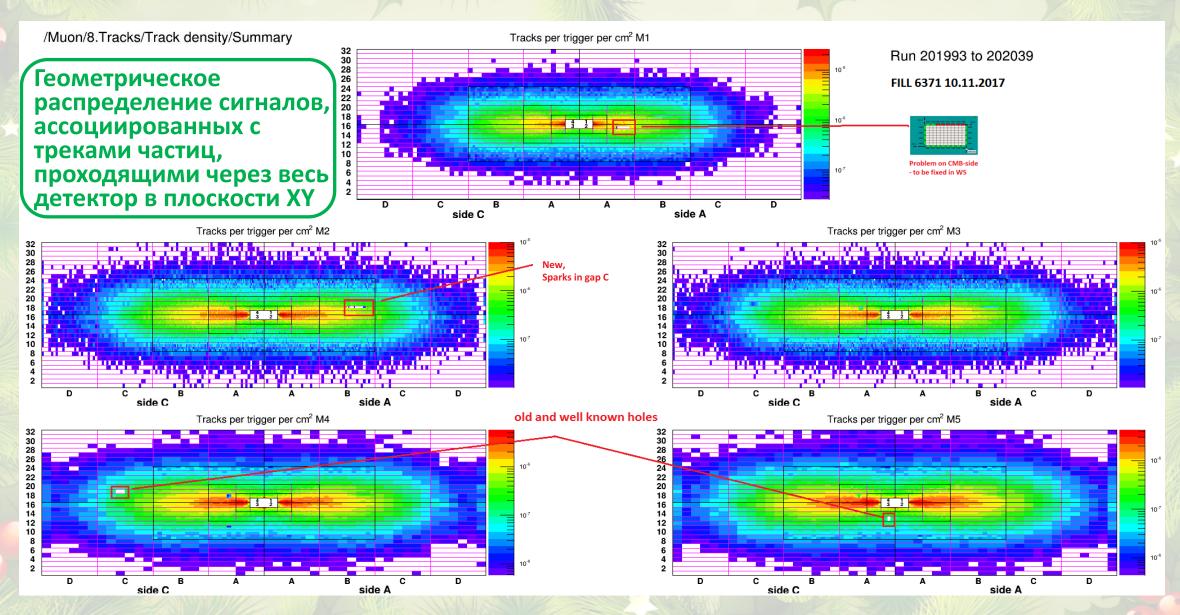
Потери эффективности в 2017 году

	_		THE REAL PROPERTY.	777 611									
		Loss	Loss	Eff	time Dead	HLT	LO	Linst	_rec	Length Nb	End	Start	j
		pb ⁻¹	min	%	%	kHz	kHz	10 ³	pb- <u>1</u>	(hrs)			
	Online ecdaqc1	0.58	32	91.6	5.1	82	955	330	29.87	27:22 1749	Tue 07 Nov 06:58	Mon 06 Nov 03:35	6
	VELO modules	0.43	24	90.7	5.3	55	943	334	14.86	13:34 1749	Sat 14 Oct 11:25	7 Fri 13 Oct 21:50	6
	Recover/Reset	0.56	31	92	3.8	60	760	332	14.15	12:52 1749	Fri 06 Oct 09:45	Thu 05 Oct 20:52	6
	SmogCalib	0.41	27	87.7	6.5	65	958	288	12.49	13:41 1560	Fri 29 Sep 04:10	3 Thu 28 Sep 14:28	6
	Online Storage	0.59	40	87	6.4	79	965	285	10.59	11:54 1560	Sun 10 Sep 21:05	Sun 10 Sep 09:10	6
	RICH LV	0.5	33	85.9	7.6	71	973	292	8.5	09:25 1560	Sat 09 Sep 18:46	2 Sat 09 Sep 09:21	6
	VELO LV+IT SPE	1.49	116	77.2	5.4	74	963	279	9.45	12:11 1560	Fri 08 Sep 20:16	7 Fri 08 Sep 08:04	6
сего ~10% потерь	IT SPECS	0.55	37	86.2	6	85	970	290	10.49	11:37 1560	Fri 08 Sep 01:04	Thu 07 Sep 13:26	6
	VELO Tell1	0.47	31	92	3	65	607	277	13.14	14:21 1456	Wed 30 Aug 23:09	Wed 30 Aug 08:47	6
ыли вызваны	Online Mep reque	1.18	53	83.7	8.8	63	910	437	12.38	09:23 2332	Thu 10 Aug 09:08	Wed 09 Aug 23:45	6
	LHC in adjust	0.54	23	92	5.2	70	906	423	20.42	14:34 2332	Sun 06 Aug 04:35	Sat 05 Aug 14:01	6
юонным детектором	ODIN orbit pulse N	2.56	125	78.9	4.7	68	901	443	17.31	14:04 2332	Sat 05 Aug 04:20	Fri 04 Aug 14:16	6
	Online ecs01	0.49	21	91.5	4.9	82	902	421	14.88	10:44 2332	Wed 02 Aug 17:28	Wed 02 Aug 06:43	6
	VELO LV	0.54	23	92.4	4.9	79	902	418	22.39	16:04 <mark>2332</mark>	Sun 30 Jul 15:45	Sat 29 Jul 23:41	6
	TT errors	0.83	39	83.3	6.6	59	928	447	19.55	15:21 2332	Fri 21 Jul 06:03	Thu 20 Jul 14:41	5
	VELO LV	0.59	36	63.8	7.8	48	915	427	2 2	02:03 2332	Wed 19 Jul 11:27	Wed 19 Jul 09:23	5
	Online Storage	0.46	23	86.7	7.3	55	820	378	6.84	05:47 2058	Sun 16 Jul 20:12	Sun 16 Jul 14:24	5
	ВСМ	0.56	30	89.3	4.8	66	876	349	13.58	12:05 1962	Thu 22 Jun 14:33	Thu 22 Jun 02:27	5
	MUON HV	1.24	71	87.5	4.5	66	825	329	22.08	21:15 1860	Wed 21 Jun 12:44	Tue 20 Jun 15:28	5
	ODIN ttcodin03	N 43	45	81.7	7.2	35	681	194	3.64	06:24 1108	Sat 17 Jun 03:53	Fri 16 Jun 21:29	5
	OT/MUON/TMU/PU	0.52	96	60.5	12.8	9	574	153	3 2.59	07:55 908	Wed 14 Jun 16:26	Wed 14 Jun 08:30	5
	10	16 pb ⁻¹	16 hr										7

Мюонная система детектора LHCb


Зона нашей прямой ответственности — элементы детектора произведенные ПИЯФ:

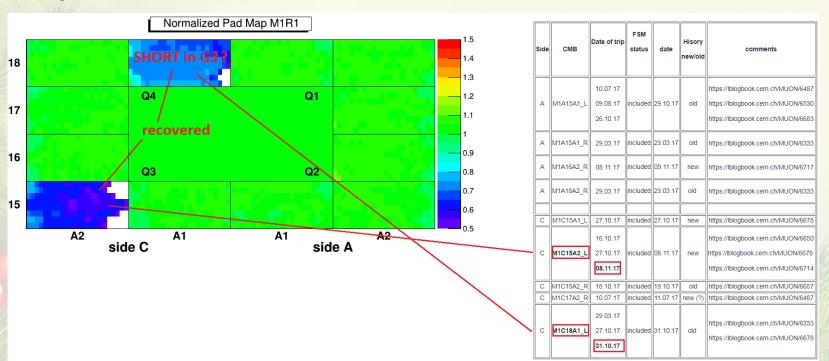
- Обслуживание пропорциональных камер (576 камер 4-х регионов для станций М2-М4. Произведены на двух фабриках ПИЯФ)
- Обслуживание высоковольтной системы (3860 каналов высоковольтной системы. Используется для камер 3 и 4 регионов в станциях М2-М5)

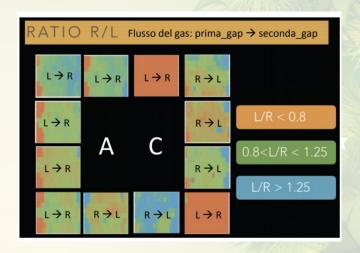

Кроме того, мы осуществляем постоянный контроль за работой мюонного детектора и обеспечение эффективного набора данных:

- Тренировка камер для устранения темновых токов (Мальтер ток)
- Обслуживание детекторной электроники
- Замена/ремонт вышедшего из строя оборудования
- Улучшение системы контроля эксперимента
- Подготовка к модернизации эксперимента в 2019 году

Мюонный детектор

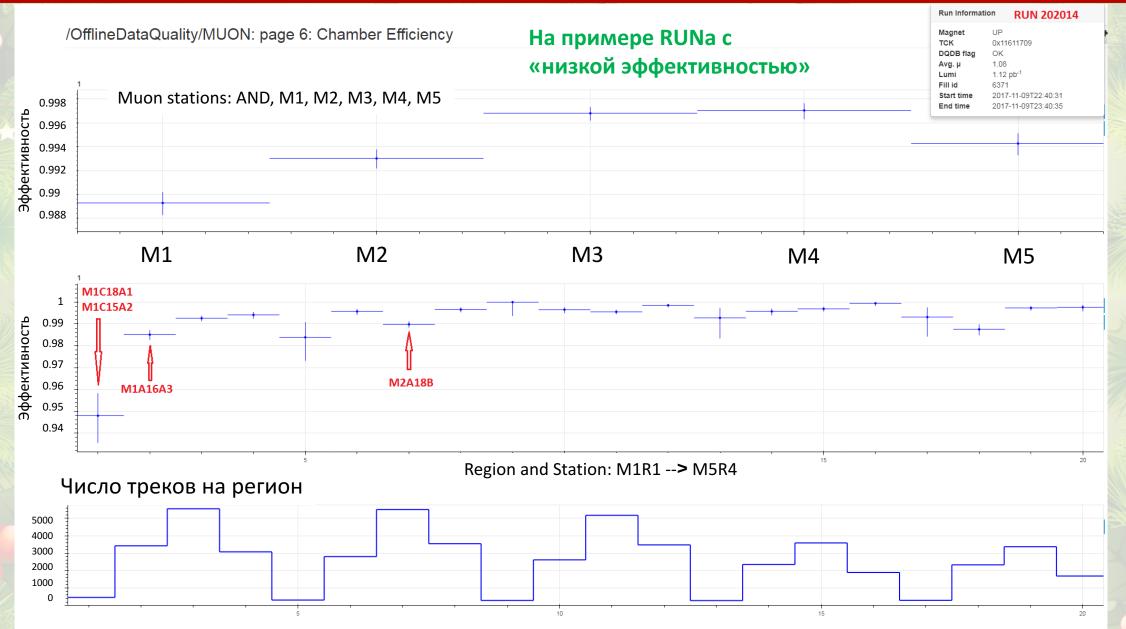
Мюонный детектор

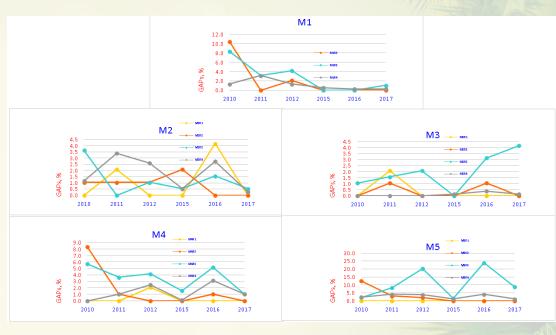


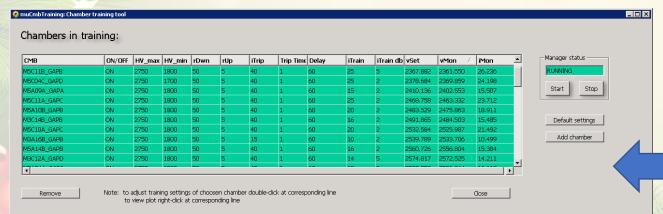

Мюонный детектор - GEM

В 9 из 24 GEMoв наблюдался большой ток похожий на Мальтер-ток. Все, кроме двух, быстро восстанавливались с помощью тренировки с пучком.

В камерах M1C18A1 и M1C15A2 наблюдался большой ток в одном из двух GEMов в каждой. В результате, в конце работы с протонным пучком эффективность этих камер была порядка 80%.

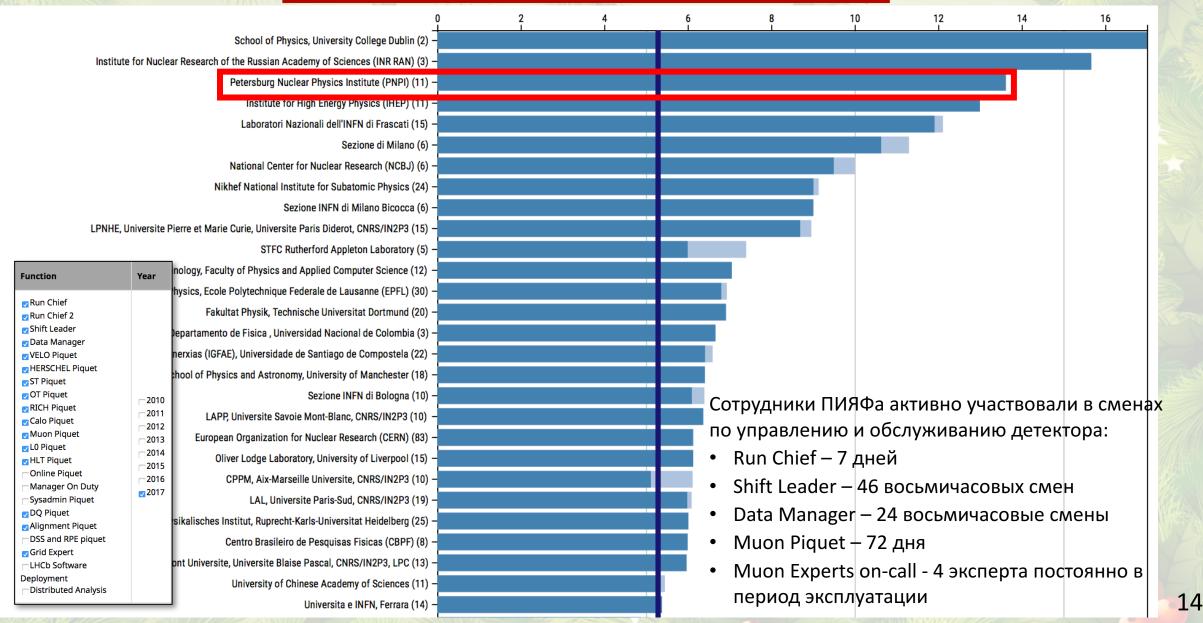

Эффективность была восстановлена после тренировки под большим напряжением.


Также была обнаружены участки неэффективности расположенные у входа газовой линии. В январе мы снимем три GEMa, чтобы исследовать эти проблемы.


Мюонный детектор - эффективность

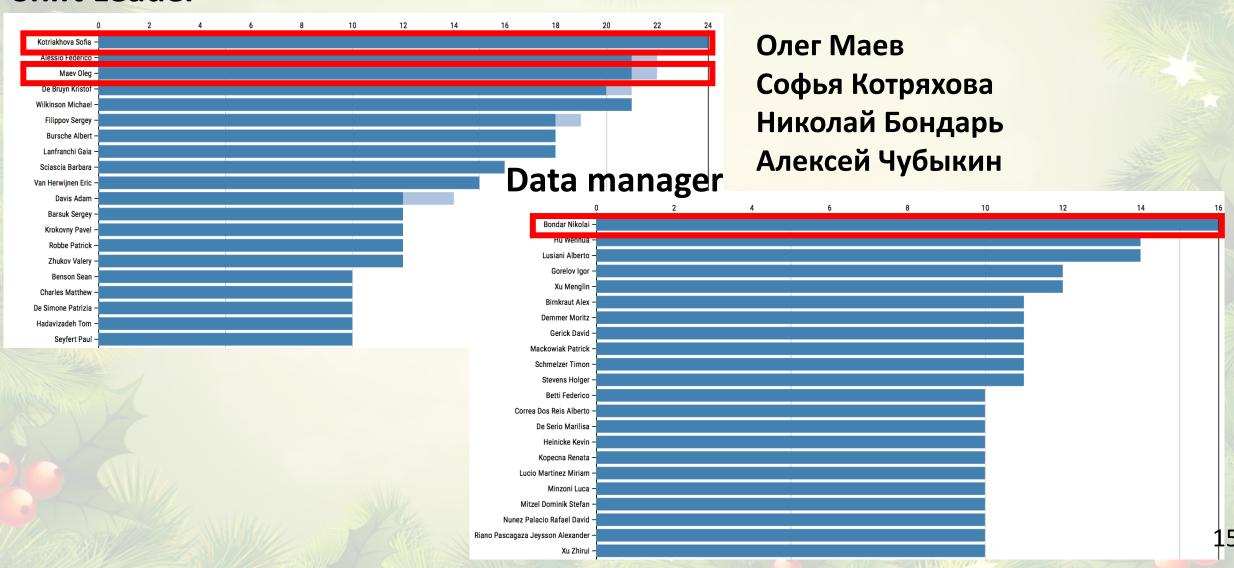
Мальтер эффект в пропорциональных камерах

11/26/2017	7 TRIPS in 2017 starting from the end of June									Efficiency of the method					
	A-side		C-side						2 Gaps 3 Gaps		total	total	new		
	Gaps	CMB	Gaps	CMB	total GAPs	total CMBs	% Gaps	% CMBs	in CMB in CMB		Gaps	2017	2017	cured	Eff
VI1R2	0	0	0	0	0	0	0.0	0.0		M1R2	5	0	0	5	100.
И1R3	1	1	0	0	1	1	1.0	2.1		M1R3	12	1	1	11	100.
/1R4	1	1	0	0	1	1	0.3	0.5		M1R4	15	1	0	14	93.3
/12R1	0	0	0	0	0	0	0.0	0.0		M2R1	3	0	0	3	100.
VI2R2	0	0	0	0	0	0	0.0	0.0		M2R2	4	0	0	4	100.
M2R3	1	1	0	0	1	1	0.5	2.1		M2R3	14	1	1	13	100.
√2R4	0	0	2	2	2	2	0.3	1.0		M2R4	53	2	2	51	100.
//3R1	0	0	0	0	0	0	0.0	0.0		M3R1	1	0	0	1	100.
√13R2	0	0	0	0	0	0	0.0	0.0		M3R2	2	0	0	2	100.
M3R3	3	3	5	3	8	6	4.2	12.5	1	M3R3	15	8	3	7	58.3
M3R4	0	0	1	1	1	1	0.1	0.5		M3R4	5	1	1	4	100.
V14R1	0	0	0	0	0	0	0.0	0.0		M4R1	1	0	0	1	100.
M4R2	0	0	0	0	0	0	0.0	0.0		M4R2	10	0	0	10	100
M4R3	0	0	2	2	2	2	1.0	4.2		M4R3	22	2	0	20	90.9
V14R4	2	2	6	5	8	7	1.0	3.6	1	M4R4	43	8	6	35	94.0
V15R1	0	0	0	0	0	0	0.0	0.0		M5R1	0	0	0	0	-
M5R2	0	0	0	0	0	0	0.0	0.0		M5R2	12	0	0	12	100.
M5R3	7	7	10	8	17	15	8.9	31.3	2	M5R3	57	17	2	40	72.
√15R4	3	2	6	5	9	7	1.2	3.6	2	M5R4	77	9	3	68	91.9
total:	18	17	32	26	50	43	1.0	3.1	5 1	total:	351	50	19	301	90.7

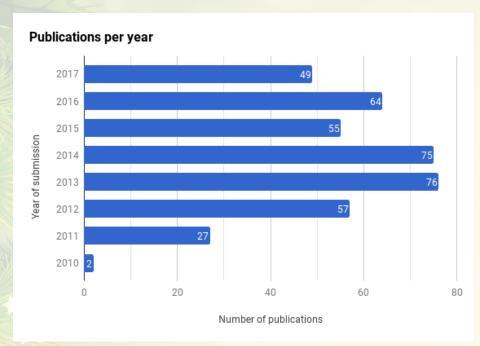


В 2017 году Мальтер-токи наблюдались в 50ти газовых промежутках (всего в 43 камерах), что, примерно в 3 раза меньше обычного, но, нужно учитывать, что и светимость была меньше большую часть года.

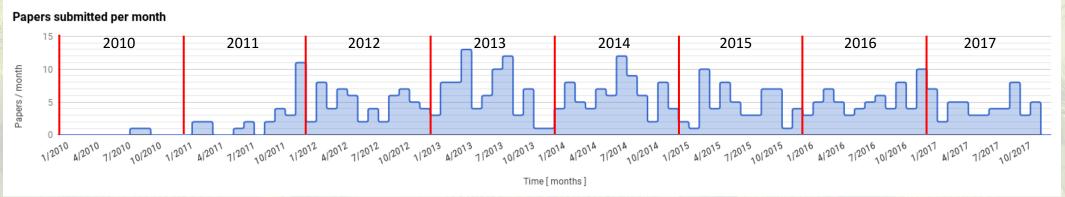
Среди них 18 на А-стороне, 32 на С-стороне; 19 новых – не имевших ранее такой проблемы


Для тренировки камер было разработано специальное программное обеспечение

Смены в 2017 году



Смены в 2017 году


Shift Leader

Публикации LHCb

- 405 статей опубликовано
- 49 в 2017 году
- 12 близки к публикации
- 32 работы в стадии ревью

Зимняя техническая остановка

TO DO	DONE
Открываем все станции	Полностью открыта А-сторона
Нужно заменить 9 камер с проблемами в цепи высокого напряжения	Камеры на А-стороне заменены (5 + 1)
Устранить проблемы в ~50 сломанных/шумящих FEBax	На А стороне работы завершены на 80%
Контрольная система: замена 2х SB и бэкплейна SB-крейта	Сделано
Замена 3х GEМов	Планируется в январе
Прецизионное измерение beam plug со стороны адронного калориметра	
Тренировка камер на отрицательном высоком напряжении в целях борьбы с Мальтер-эффектом (41 камера)	На А стороне 30% камер оттренированны, остальные в процессе
Сканирование порогов усилителей	

