
μSR-2013

В лаборатории МФКС два направления:

Воробьев С.И. – и.о. рук.лаб. Виноградова Л.Л. – ст.лаб.

I. µSR- исследования на ускорителе ПИЯФ.

Щербаков Геннадий Васильевич — с.н.с. Геталов Александр Леонидович — с.н.с. Комаров Евгений Николаевич — с.н.с. Котов Сергей Арестович — н.с. Павлова Ирина Ивановна — м.н.с.

Морослип Александр Эдуардович – аспирант

Андриевский Дмитрий Сергеевич – ст.лаб. (0,5) (студент СПбГУ)

Кононов Антон Юрьевич — студент СПбГПУ — студент СПбГПУ — студент СПбГПУ

II. Рождение мезонов в рN и рА – соударениях. (Эксперимент ANKE, Юлих). (Доклад Барсова С.Г. 25 декабря 2013

Г.) Барсов Сергей Григорьевич — с.н.с. Вальдау Юрий Валерьевич — н.с. Микиртычьянц Сергей Михайлович — с.н.с. Шиков Егор Николаевич — м.н.с. Дзюба Алексей Александрович — с.н.с.

ОСНОВНЫЕ НАПРАВЛЕНИЯ ИССЛЕДОВАНИЙ в 2013 году:

- I. Завершена обработка данных по исследованию магнитных фазовых переходов и распределению локальных магнитных полей в $GdMn_2O_5$. (совместно с ФТИ им. А.Ф. Иоффе (СПб)).
- II. Проведен эксперимент по исследованию магнитных фазовых переходов и распределению локальных магнитных полей в мультиферроике $Eu_{0.8}Ce_{0.2}Mn_2O_5$ (совместно с ФТИ им. А.Ф. Иоффе (СПб)).
- III. Проведены первые исследования мультиферроиков-перовскитов: $TbMnO_3$ и $Tb_{0.95}Bi_{0.05}MnO_3$. (совместно с ФТИ им. А.Ф. Иоффе (СПб)).
- IV. Исследование свойств феррожидкостей на основе наночастиц $CoFe_2O_4$. Приготовлены и проведены первые исследования образцов феррожидкости ($CoFe_2O_4$ +PAV(2DBS)+ H_2O) с концентрацией наночастиц магнетита 0,3% и 3%. (совместно с ОИЯИ (Дубна);
 - Национальный институт физики и ядерной технологии им. Х. Хулубея (Румыния); Центр фундаментальных и передовых технических исследований (Румыния); Институт исследования и развития электротехники (Бухарест, Румыния)).
- V. Исследования электротехнических сталей «Исследование тензора магнитной текстуры». (совместно с НИЯУ МИФИ (Москва)).
- VI. Модернизация µSR-установки. *(совместно с ЛКСТ ОФВЭ).*

Исследование мультиферроика GdMn₂O₅ µSR-методом

Мультиферроик GdMn₂O₅ (керамический образец и образец, составленный из большого числа хаотически ориентированных монокристаллов с линейными размерами 2-3 mm) был изучен µSR-методом в интервале температур 10-300K.

Обнаружены три аномалии в температурном поведении параметров функции релаксации поляризации мюонов:

- -вблизи фазового перехода, обусловленного возникновением дальнего магнитного порядка в подсистеме ионов марганца (T_{N1} =40-41 K);
- вблизи lock-in-перехода, обусловленного скачкообразным изменением волнового вектора магнитного порядка (T_L =35 K);
- вблизи температуры упорядочения ионов Gd^{3+} (T_{N2} =15 K).

Анализ временных спектров прецессии спина мюонов во внутреннем магнитном поле образцов показал, что имеются две позиции предпочтительных мест локализации мюонов в образцах, различающиеся величинами частот прецессии и характером их температурной зависимости.

Более низкочастотная прецессия, обусловленная ионами Mn^{4+} , ферромагнитными комплексами Mn^{4+} – Mn^{4+} +мюоний(Mu) и ионами Gd^{3+} , наблюдалась во всей области температур $T < T_{N1}$ и практически не зависела от температуры.

При температурах $T < T_L = 35$ К возникала также более высокочастотная прецессия, обусловленная ионами Mn^{3+} . Для неё характерна температурная зависимость $(1-T/T_{N1})^{\beta}$ с показателем $\beta = 0.39$, типичная для 3D-магнетиков гейзенберговского типа.

При $T < T_{N1}$ обнаружен недостаток полной асимметрии. Это, возможно, обусловлено образованием мюония и указывает на важную роль процессов переноса заряда при формировании дальнего магнитного порядка.

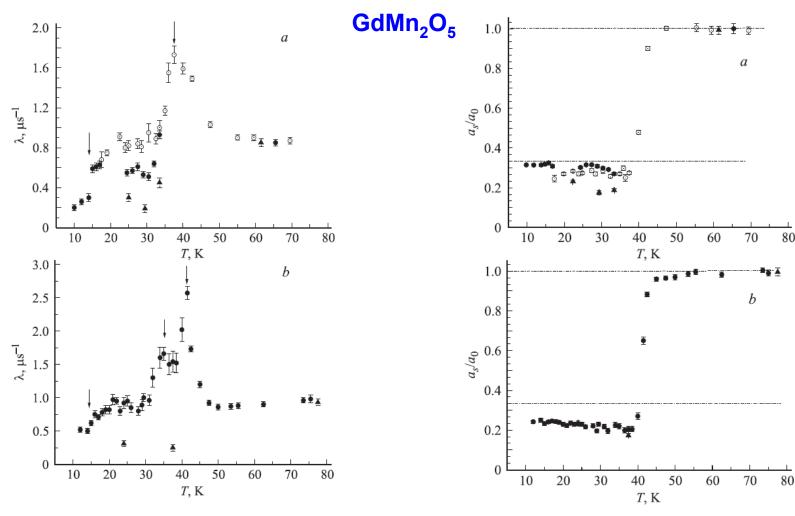
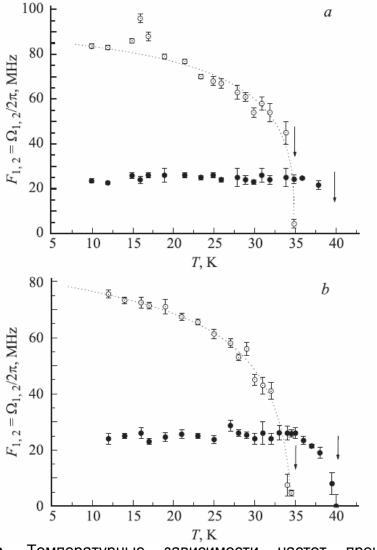
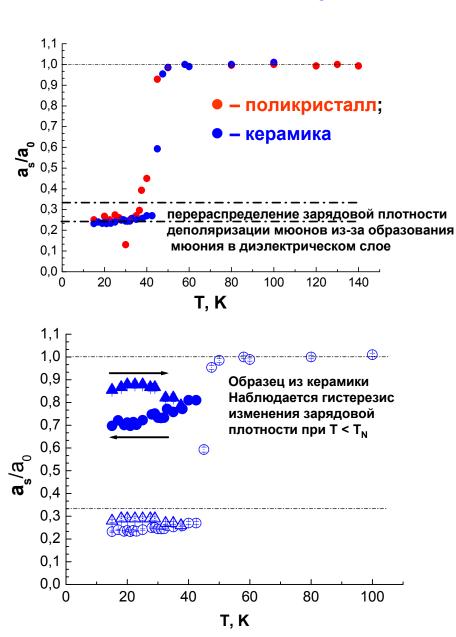
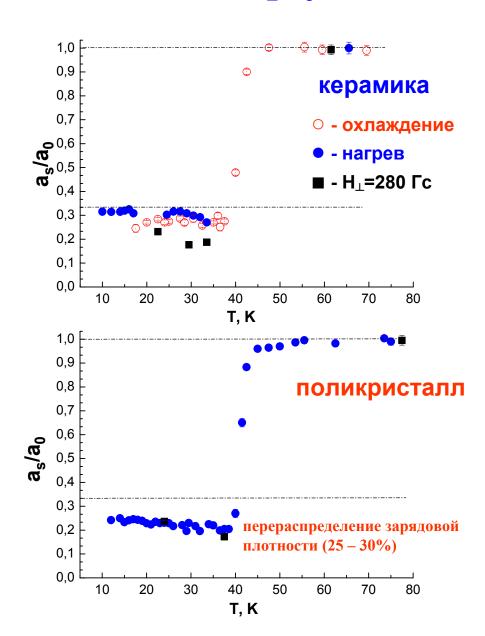
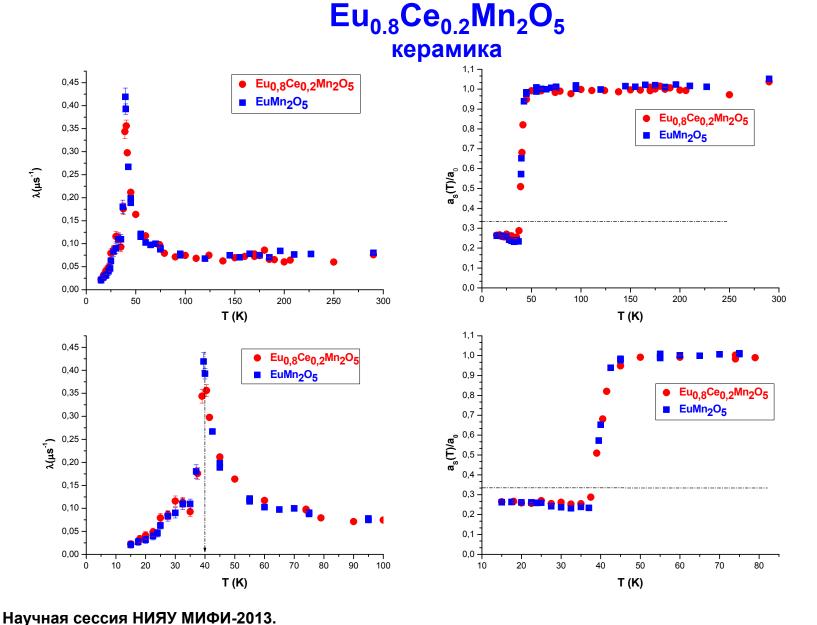



Рис. Температурная зависимость скорости динамической релаксации λ (а—керамический образец; b — образец из монокристаллов); темные точки относятся к измерениям при нагревании, светлые — при охлаждении, треугольники — к измерениям во внешнем магнитном поле H = 280 Гс; стрелками отмечены температуры фазовых переходов.

Рис. Температурная зависимость остаточной асимметрии a_s , нормированной к полной асимметрии a_0 (a— керамический образец; b — образец из монокристаллов); уровни нормированной асимметрии a_s / a_0 =1/3 (T< T_{N1}) и a_s / a_0 =1 (T> T_{N1}) отмечены штрихпунктирными линиями; темные точки относятся к измерениям при нагревании, светлые — при охлаждении, треугольники — к измерениям во внешнем магнитном поле H = 280 Гс.

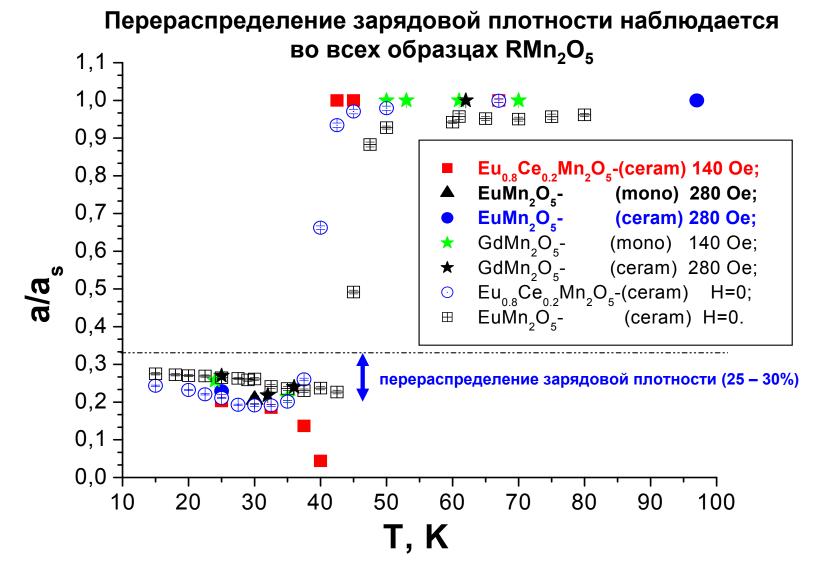



Рис. Температурные зависимости частот прецессии во внутреннем магнитном поле образца (a — керамический образец; b — образец из монокристаллов); темные точки относятся к частоте F_1 , светлые — к частоте F_2 ; стрелками отмечены температуры фазовых переходов T_L = 35 K и T_{N1} = 40 K; пунктирная кривая получена методом наименьших квадратов: $F_2 \sim (1 - T/T_L)^{\beta}$, T_L = 35 K; β = 0.39 ± 0.02.


ФТТ, том 55, вып. 3, 2013, стр. 422–430. Научная сессия НИЯУ МИФИ-2013. VI Международная научная конференция «АКТУАЛЬНЫЕ ПРОБЛЕМЫ ФИЗИКИ ТВЕРДОГО ТЕЛА» (ФТТ-2013). Семинар ОФВЭ, 5 ноября 2013 года.

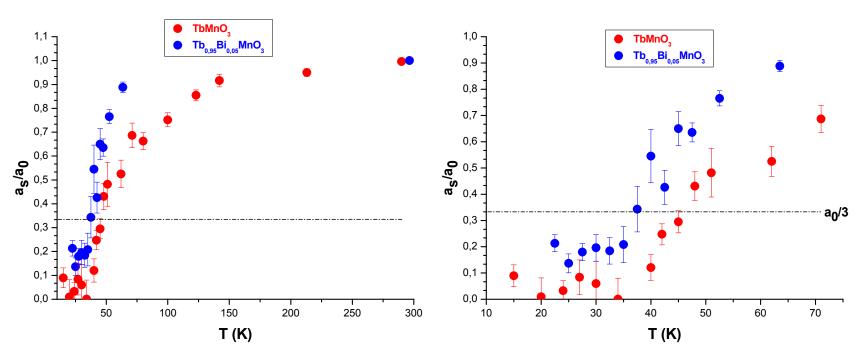
EuMn₂O₅

GdMn₂O₅



IV Международный, междисциплинарный симпозиум «Среды со структурным и магнитным упорядочением» (MULTIFERROICS-4).

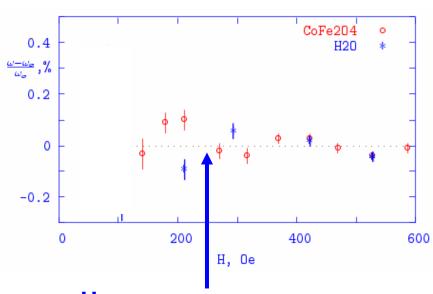
VI Международная научная конференция «АКТУАЛЬНЫЕ ПРОБЛЕМЫ ФИЗИКИ ТВЕРДОГО ТЕЛА» (ФТТ-2013).

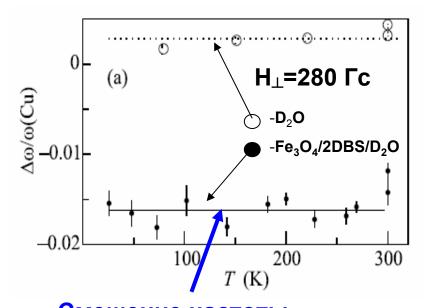

Научная сессия НИЯУ МИФИ-2013.

IV Международный, междисциплинарный симпозиум «Среды со структурным и магнитным упорядочением» (MULTIFERROICS-4).

VI Международная научная конференция «АКТУАЛЬНЫЕ ПРОБЛЕМЫ ФИЗИКИ ТВЕРДОГО ТЕЛА» (ФТТ-2013).

Семинар ОФВЭ, 5 ноября 2013 года.




Феррожидкость

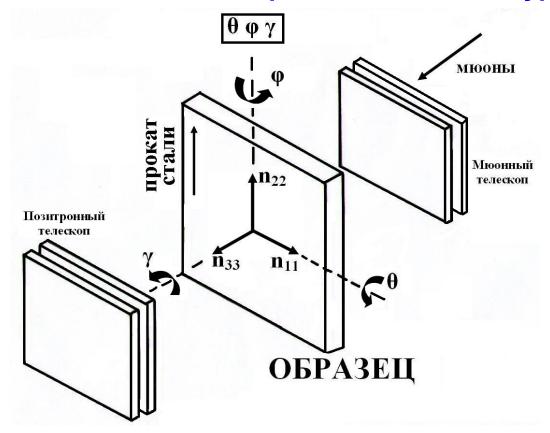
$$CoFe_2O_4 + PAV(2DBS) + H_2O$$
 (концентрация ~ 0.3%).

 $Fe_3O_4 + PAV(2DBS) + D_2O$ (концентрация ~ 4.7%).

Средний размер гранул 12 нм

Нет смещения частоты

Возможные причины:


- 1. Более низкая концентрация (возможность µSR-метода);
- 2. Замещение атома Fe на Co.

Смещение частоты
Позволяет определить
размер наночастиц (~12 нм).

В этом году был проведён сеанс по исследованию образца $CoFe_2O_4 + PAV(2DBS) + H_2O$ с концентрацией ~ 3%. Данные обрабатываются.

В дальнейшем планируется продолжить исследования данной феррожидкости, а также феррожидкостей с большей концентрацией (~5÷10%) CoFe₂O₄ и MnFe₂O₄ диспергированных в воде H₂O.

Исследования электротехнических сталей. «Исследование тензора магнитной текстуры».

Материал, марка стали	n ₁₁	n ₂₂	n ₃₃
ST1 (НВ, Япония)	0,125±0,005	0,798±0,032	0,077±0,003
ST2 (НЛМЗ 34-15)	0,149±0,006	0,785±0,031	0,067±0,003
ST3 (FRANG M3H)	0,163±0,007	0,763±0,031	0,074±0,003
ST4 (НЛМЗ 34-07)	0,192±0,008	0,708±0,028	0,100±0,004
ST5 (Sweden M6)	0,175±0,007	0,773±0,031	0,052±0,002

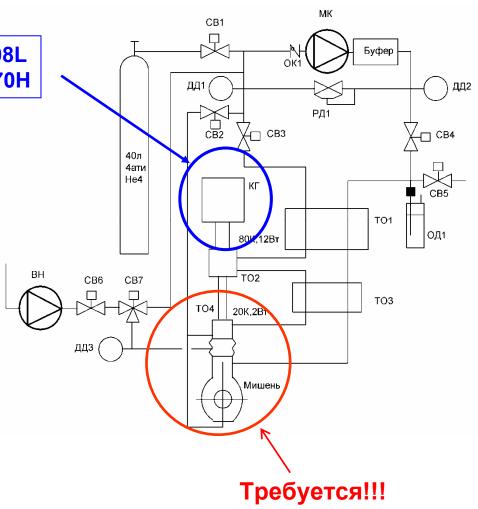
Модернизация установки:

Для чего нужно:

- 1. Изменять температуру исследуемых образцов в диапазоне 15 350 К;
- 2. Стабильно работать при высоких температурах (200 350 К);
- 3. Исключить потери гелия 20% (независимая работа от Криогенной Станции);
- 4. Экономия ускорительного времени (автономная работа- без захода в зал и смены дьюара).

Криорефрежератор CH-208L Гелиевый компрессор F-70H

Было приобретено


для создания «гелиевой петли»:

- турбомолекулярный насос;
- безмасляный спиральный насос;
- мембранный вакуумный насос.

для улучшения временного разрешения µSR-установки и понижения чувствительности к внешнему магнитному полю: ФЭУ фирмы Hamamatsu "R4998" с экранами магнитной защиты.

Исследование потерь поляризации мюонов в пластических сцинтилляторах.

Письма в ЖЭТФ, том 97, вып. 12, 2013, стр. 763 – 765.

Планы на 2014 год:

- 1. Исследование магнитных фазовых переходов и распределения локальных магнитных полей в мультиферроиках ($ErMn_2O_5$, $TbMn_2O_5$, $TbMnO_3$ и $Tb_{0.95}Bi_{0.05}MnO_3$).
- а). В ${\rm ErMn_2O_5}$ основной вклад в магнитный момент орбитальный, сильно связанный с решеткой. Все моменты жестко ориентированы вдоль оси c, формируя внутреннее эффективное магнитное поле по этой оси. Интересно проследить за частотами прецессии в ${\rm ErMn_2O_5}$ взаимодействие ${\rm Er-Mn}$ существенно отличается от ${\rm Gd-Mn}$.
- б). Именно в $ErMn_2O_5$ был зафиксирован структурный фазовый переход с изменением расстояний в цепочке ионов Mn^{3+} –O– Mn^{4+} вблизи 25 К. Представляет интерес изучить асимметрию в этом кристалле вблизи температуры перехода и сравнить с Eu и Gd образцами.
- в). В ${\rm TbMn_2O_5}$ тоже большой магнитный момент, но ориентированный в плоскости ab. Как это скажется на изменении асимметрии и поведении частот, вблизи структурного перехода.
- г). Интересно проверить есть ли эффект потери асимметрии в мультиферроиках—перовскитах, номинально содержащих только ионы Mn^{3+} . Как там дело обстоит с частотами прецессии. (Совместно с ΦTU , Санкт-Петербург).
- 2. Планируется провести исследования изменения частоты прецессии мюона в феррожидкости в зависимости:
- а) от концентрации магнитных наночастиц (~5 ÷ 10%);
- б) от состава образцов ($CoFe_2O_4$ и $MnFe_2O_4$ диспергированных в воде H_2O). (Совместно с ОИЯИ, Дубна).
- 3. Исследование фазовых переходов в хромистых сталях с помощью µSR-метода, а также определения зависимости величины внутренних локальных магнитных полей от способа обработки и приготовления.

На данный момент приготовлено 12 образцов. (Совместно с НИЯУ МИФИ, Москва).

4. Продолжение модернизации установки. (Совместно с ЛКСТ ОФВЭ).

Список публикаций за 2013 год (µSR-метод):

- **1**. С.И. Воробьев, А.Л. Геталов, Е.И. Головенчиц, Е.Н. Комаров, В.П. Коптев, С.А. Котов, И.И Павлова, В.А. Санина, Г.В. Щербаков. *Исследование мультиферроика GdMn*₂O₅ µSR-методом. **ФТТ**, том 55, вып. 3, 2013, стр. 422–430.
- S.I. Vorob'ev, A.L. Getalov, E.I. Goloventchits, E.N. Komarov, V.P. Koptev, S.A. Kotov, I.I. Pavlova, V.A. Sanina, and G.V. Shcherbakov. *Investigation of the GdMn*₂O₅ *multiferroic by the μSR method.* **Physics of the Solid State**, Vol. 55, № 3 (2013), pp. 466 − 475.
- **2.** С.И. Воробьев, А.Л. Геталов, Е.И. Головенчиц, Е.Н. Комаров, С.А. Котов, И.И Павлова, А.Э. Морослип, В.А. Санина, Г.В. Щербаков. *Исследование мультиферроика* $Eu_{0.8}Ce_{0.2}Mn2O_5$ с помощью μ SR-метода. **Научная сессия НИЯУ МИФИ-2013**. Москва. Аннотации докладов, том 1, стр.183.
- 3. С.И. Воробьев, А.Л. Геталов, Е.Н. Комаров, С.А. Котов, И.И Павлова, А.Э. Морослип, Г.В. Щербаков. Исследование магнитных фазовых переходов и распределений локальных магнитных полей в манганитах редкоземельных металлов µSR-методом. Научная сессия НИЯУ МИФИ-2013. Аннотации докладов, том 1, стр.182.
- **4.** С.И. Воробьев, А.Л. Геталов, Е.Н. Комаров, С.А. Котов, И.И Павлова, А.Э. Морослип, А.Ю. Мищенко, В.Ю. Милосердин, Г.В. Щербаков. *Исследование ферритно-мартенситных сталей с помощью µSR-метода*. **Научная сессия НИЯУ МИФИ-2013**. Аннотации докладов, том 1, стр.182.
- **5.** С.И. Воробьев, А.Л. Геталов, Е.Н. Комаров, С.А. Котов, И.И. Павлова, А.Э. Морослип, Г.В. Щербаков *Исследование потерь поляризации мюонов в пластических сцинтилляторах и кварце µSR-методом.* **Письма в ЖЭТФ**, том 97, вып. 12, 2013, стр. стр. 763 765.
- S.I. Vorob'ev, A.L. Getalov, E.N. Komarov, S.A. Kotov, I.I. Pavlova, A.E. Moroslip and G.V. Shcherbakov. *Muon Spin Rotation Study of Muon Polarization Losses in Plastic Scintillators and Quartz.* **JETP Letters**, 2013, Vol. 97, № 12, pp.661 663.
- 6. Воробьев С.И., Геталов А.Л., Головенчиц Е.И., Комаров Е.Н., Котов С.А., Павлова И.И., Морослип А.Э., Санина В.А., Щербаков Г.В. Исследование мультиферроика $GdMn_2O_5$ с помощью μ SR-метода. VI Международная научная конференция «АКТУАЛЬНЫЕ ПРОБЛЕМЫ ФИЗИКИ ТВЕРДОГО ТЕЛА» (ФТТ-2013): сборник докладов Международной научной конференции, Минск,15-18 октября 2013 г. В трех томах. Т. 1, стр. 118-120.
- 7. Воробьев С.И., Геталов А.Л., Головенчиц Е.И., Комаров Е.Н., Котов С.А., Павлова И.И., Морослип А.Э., Санина В.А., Щербаков Г.В. *Исследование мультиферроика Еи_{0.8}Се_{0.2}Мп₂О₅с помощью µSR-метода. VI Международная научная конференция «АКТУАЛЬНЫЕ ПРОБЛЕМЫ ФИЗИКИ ТВЕРДОГО ТЕЛА» (ФТТ-2013): сборник докладов Международной научной конференции, Минск,15-18 октября 2013 г. В трех томах. Т. 1, стр. 227-229.*
- **8.** S.G. Barsov, A.L. Getalov, E.N. Komarov, V.P. Koptev, S.A. Kotov, A.E. Moroslip, I.I. Pavlova, G.V. Shcherbakov, S.I. Vorobyev. μSR-INVESTIGATIONS AT PNPI. В сборнике ОФВЭ «**HEPD: Main scientific activity 2007–2012»**, pp. 266–272, Gatchina 2013.
- 9. С.Г. Барсов, С.И. Воробьев, А.Л. Геталов, С.А. Котов, Г.В. Щербаков. Исследование фазовых переходов в сплавах $(Pd_{1-x}Fe_x)_{0.95}Mn_{0.05}$ и $Cu_{(1-x)}Mn_x$ с помощью μ SR-метода. IV Международный, междисциплинарный симпозиум «Среды со структурным и магнитным упорядочением» (MULTIFERROICS-4). 4-7 сентября 2013 г г.Ростов-на-Дону- г. Туапсе, Краснодарский край.
- 10. Воробьев С.И., Геталов А.Л., Головенчиц Е.И., Комаров Е.Н., Котов С.А., Павлова И.И., Морослип А.Э., Санина В.А., Щербаков Г.В. Исследование мультиферроика $Eu_{0.8}Ce_{0.2}Mn_2O_5$ с помощью μ SR-метода. IV Международный, междисциплинарный симпозиум «Среды со структурным и магнитным упорядочением» (MULTIFERROICS-4). 4-7 сентября 2013 г г.Ростов-на-Дону- г. Туапсе, Краснодарский край.

С наступающим 2014 годом!

