

НАУЧНАЯ СЕССИЯ ОТДЕЛЕНИЯ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ 28 декабря 2010

Проект CMS в 2010

В.Сулимов

Muon Subsystem

Status Muon Subsystem

ME1/2 72 1.0x0.0 III ME1/3 72 1.7x0.9m²

ME 2/1 36 1.9×1.25 m²

ME3/1 36 1.7×1.25 m²

ME4/1 36 1.5×1.25m²

ME23/2 144 3.2×1.3m²

473 CSCs (cover about 6000 m²)

2.3 10**6 anode wires

183168 anode readout channels

217728 cathode readout channels

Stability of CSC electronics

The main source of electronics loses is FPGA EPROMs lost information.

CSC operation -HV trips

- 1.In 2008-2009 the number of HV channels which had a HV current trip history was small (12 channels).
- 2. Before the LHC reached an instantaneous luminosity 10**32 the number of tripped channels slowly grew up with time to 25.
- 3. At luminosity = 2x10**32 the number of HV tripped channels went unexpectedly up to 40.

It is still low number (CSC has more than 9400 HV channels).

CSC status at the end of LHC proton run

CSC finished the LHC p - p collisions 2010 run with efficiency 98.24%. We lost 8 CFEBs & 4CFEBs were disable

The first ZZ \rightarrow 4 μ event

The first ZZ \rightarrow 4 μ event

ρ-φ view

Only tracks with p_T>1 GeV are displayed

Probability to find such an event in the first 22pb⁻¹ of data: 16%.

Invariant Masses

 $\mu_0 + \mu_1$: 92.15 GeV (total(Z) p_T 26.5 GeV, ϕ -3.03),

 $\mu_2 + \mu_3$: 92.24 GeV (total(Z) p_T 29.4 GeV, ϕ +.06),

 $\mu_0 + \mu_2$: 70.12 GeV (total p_T 27 GeV), $\mu_3 + \mu_1$: 83.1 GeV (total p_T 26.1 GeV).

Invariant Mass of 4µ: 201 GeV

Just a reminder...

Figure 5: D0 ZZ result.

The Standard Model at 7TeV

$ISR \rightarrow 904$

Shifts in 2010

General Requirement for 2010: 6 points per Author

- PNPI participates in Trigger and DCS Central shifts --- 69.75 points (54 shifts).
- CSC shifts --- 119 shifts.
- CSC DQM shifts --- 7 shifts

CSC Upgrade I

- Original design unfinished ME4/2 not built
- •72 ME4/2 chambers to complete system
 - Identical to chambers already built and working well
 - Increase redundancy of system
 - Efficient triggering at high luminosities

ME4/2 Upgrade

R&D Production of 31 CSC

CSC Production Plans

Assembly in B904 factory at CERN

- •Currently being renovated occupancy end of 2010
- •~1000 m² space with good services
- CERN will provide two clean rooms for CSC

Shipped tooling and parts from Fermilab

- Parts for approximately 3 prototypes + spares
- Shipment has arrived in B904

Plans for 2011

- Plan to set up machines in January February 2011
- •Then produce 2-3 prototypes as part of a learning curve (debug systems and train personnel)

CSC tooling in B904

