

Эксперимент ALICE в 2010 году

Научная сессия ученого совета ОФВЭ ПИЯФ 28 декабря 2010 Е. Крышень

Статус эксперимента ALICE

Data taking in 2010

<u>pp:</u>

- апрель июнь: min. bias + мюонный триггер
- июль сентябрь: min.bias + мюонный триггер

+ триггер на высокую множественность

Пучки разведены на ~3.8 о

- L ~ 0.15 Hz/ub \rightarrow µ ~ 0.05 (кол-во столкновений/банч-кроссинг)
- октябрь: раны с высокой светимостью для мюонных измерений L ~ 1 Hz/ub
- 851 ч стабильных пучков
- Полная интегральная светимость ~ 0.5 pb⁻¹ (~100 раз меньше, чем в ATLAS/CMS)

<u>PbPb</u>

- 7 20 Nov: min. bias + полуцентральный триггер
- 20 Nov 6 Dec: min. bias + триггер на высокую множественность + ультрапериферический триггер
- L ~ 20 30 Hz/b
- 223 ч стабильных пучков
- Интегральная светимость ~ 10 ub⁻¹
- Recorded ~ 90 mln. events (~ 30 mln. high-mult events)

Эффективность (часть времени "stable beams", когда ALICE работал в активном режиме) ~ 80%

ALICE в pp

Задачи эксперимента Alice в pp физике:

- набор рр данных для нормировки ядро-ядерных результатов;
- всестороннее изучение minimum-bias событий на LHC, подстройка Монте-Карло моделей
- изучение мягких и полужестких процессов КХД
 - дополняющих измерения других экспериментов LHC
 - изучение отдельных открытых вопросов КХД

Опубликованные результаты:

- Множественность заряженных частиц:
 - 900 ΓэΒ: EPJC 65 (2010) 111
 - 900 ΓэΒ, 2.36 ΤэΒ: **ΕΡJC** 68 (2010) 89
 - **7** T₉B : **EPJC** 68 (2010) 345
- Отношение выхода pbar/p @ 900 ГэВ & 7 ТэВ: PRL 105 (2010) 072002
- Распределения по поперечному импульсу @ 900 ГэВ: PLB 693 (2010) 53
- Выход странных частиц (К⁰, Λ,Ξ,Ω,φ) @ 900 ГэВ : arXiv:1012.3257, sub. EPJC
- HBT корреляции:
 - 900 ΓэΒ: PRD 82 (2010) 052001
 - 7 T₃B: next week to **PRD**
- Идентификация частиц (π ,K,p) @ 900 ГэВ: next week to **EPJC**

Много статей на стадии подготовки:

- Свойства событий @ 7 ТэВ: спектры, PID, странные частицы
- > Open charm: D^0, D^+, D^*
- ► J/ψ→μμ, ee
- ➤ Полулептонные распады тяжелых кварков → µ,е
- > pQCD: топология событий, фрагментация струй, корреляции
- Свойства событий с высокой множественностью
- ▶ ...

Распределения множественности

- Измерения при 0.9 ТэВ согласуются с данными UA5
- Хорошее согласие между ALICE и CMS в пределах1 σ (< 3%)
- Тренд между 0.9 ТэВ и 2.36 ТэВ для NSD и INEL подтверждается новыми данными при более высокой энергии (только для специального класса INEL_{N>0})
- Рост $dN_{ch}/d\eta$ с \sqrt{s} хорошо описывается степенным законом.
- Средние множественности, а также относительный рост множественности плохо описываются в моделях, рост множественности с энергией значительно больше чем в Монте-Карло генераторах

Распределения множественности

- Получены результаты распределения множественности при трех энергиях: 0.9, 2.36 и 7 ТэВ.
- Распределения получены в нескольких диапазонах по псевдобыстроте до |η|<1.3.
- Распределения множественности хорошо описываются отрицательным биномиальным распределением.
- PHOJET неплохо описывает большие множественности при 0.9 и 2.36 ТэВ.
- Ни одна из моделей не описывает полученные данные при 7 ТэВ, особенно при большой множественности, где сильны эффекты мульти-партонных взаимодействий.
- Хорошее согласие с UA5 при 0.9 ТэВ и CMS при энергиях 0.9 и 2.36 ТэВ для класса NSD.

«Остановка бариона» и отношение выхода протонов и антипротонов

$$C(q_{inv}) = (1 - \lambda) + \lambda K(q_{inv})[1 + \exp(-R_{inv}^2 q_{inv}^2)]$$

- проектная множественность: до dN/dŋ ~ 8000 зч.
- Результат @ 2.76 ТэВ: dN/dη = 1584 ± 4 (stat) ± 76 (syst)
- Всего ~30000 частиц на центральное событие, в ~ 400 раз больше чем в рр
- Множественность на нуклон-нуклонное столкновение в1.9 раз больше чем в рр
- Множественность в 2.2 раза больше чем на RHIC при 0.2 ТэВ
- Множественность растет с энергией быстрее в АА, чем в рр

Множественность заряженных частиц vs центральность

- <N_{part}> из Глауберовских расчетов
- Зависимость от центральности оказывается практически одинаковой для 2.76 и 0.2 ТэВ

Размер среды и время жизни из пионных НВТ корреляций

Подавление рождения заряженных частиц при больших Pt

Эллиптические потоки заряженных частиц

Элиптический поток как функция рт:

- Практически не зависит от энергии!
- Предсказания гидродинамики подтвердились. Плазма на LHC попрежнему ведет себя почти как идеальная жидкость!

Эксклюзивное рождение J/psi

- ≻ Мотивация: измерение поведения глюонной плотности до х~ 10⁻⁵
- Разработан генератор когерентных J/psi.
- > Изучен аксептанс в трех вариантах:
 - Muon arm
 - Muon arm + barrel
 - Barrel
- > Разработана триггерная стратегия
- > Показана возможность выделения эксклюзивных J/psi на данных 2010 года
- В 2011 году ожидается значимая статистика (несколько сотен J/psi)

Period	Total
Number of runs:	152
Hours of data taking:	168
Events analysed:	293 168 486
Muon triggers analysed:	15 643 171
Dimuon & ISPD & IV0A & V0C	573
Events after SPD selection	570
Events after V0 selection	64
Events after FMD selection	51
Events after ZDC selection	29
Events after TPC selection	13

Физика резонансов ($\rho \rightarrow \pi^{+}\pi^{-}$, f0 $\rightarrow \pi^{+}\pi^{-}$, ω 0 $\rightarrow \pi^{+}\pi^{-}\pi^{0}$)

Мотивация:

- Измерение выходов ρ и f0 мезонов позволяет улучшить настройку моделей, основанных на КХД (РҮТНІА и др.)
- Модификация ширины и массы резонансов может сигнализировать о частичном восстановлении киральной симметрии;
- Фактор ядерной модификации f0 резонанса чувствителен к его кварковой структуре;

Разработка программы онлайн-мониторинга триггерных данных

Список публикаций

<u>pp:</u>

1. First proton-proton collisions at the LHC as observed with the ALICE detector: Measurement of the charged particle pseudorapidity density at sqrt(s) = 900 GeV.

Eur. Phys. J. C65, 111 (2010).

- 2. Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC. Eur. Phys. J. C68, 89 (2010).
- 3. Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 7 TeV with ALICE at LHC. Eur. Phys. J. C68, 345 (2010).
- 4. Transverse momentum spectra of charged particles in proton-proton collisions at sqrt(s) = 900 GeV with ALICE at the LHC. Phys. Lett. B693, 53 (2010).
- 5. Midrapidity antiproton-to-proton ratio in pp collisions at sqrt(s) = 0.9 and 7 TeV measured by the ALICE experiment. Phys. Rev. Lett. 105, 072002 (2010).
- 6. Two-pion Bose-Einstein correlations in pp collisions at sqrt(s) = 900 GeV. Phys. Rev. D 82, 052001 (2010).
- Strange particle production in proton-proton collisions at sqrt(s) = 0.9 TeV with ALICE at the LHC. e-Print: arXiv:1012.3257 [hep-ex]. Submitted to EPJC.

<u>PbPb</u>

- Elliptic flow of charged particles in Pb-Pb collisions at sqrt(s_NN) = 2.76 TeV. Phys. Rev. Lett. 105, 252302 (2010).
- 2. Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at sqrt(s_NN) = 2.76 TeV. Phys. Rev. Lett. 105, 252301 (2010).
- 3. Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sqrt(s_NN) = 2.76 TeV. e-Print: arXiv:1012.1004 [nucl-ex].
- Two-pion Bose-Einstein correlations in central PbPb collisions at sqrt(s_NN) = 2.76 TeV. e-Print: arXiv:1012.4035 [nucl-ex]. Accepted to PLB.
- 5. Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sqrt(s_NN) = 2.76 TeV. e-Print: arXiv:1012.1657 [nucl-ex]. Accepted to PRL.

Other:

- 1. V. Rebyakova, M. Strikman and M. Zhalov. *LHC potential for study of the small x gluon physics in ultraperipheral collisions of 3.5 TeV protons*, Phys. Rev. D81, 031501(R) (2010)
- 2. F. Costa, C. Soós, E. Kryshen et al. *Development of a simulated trigger generator for the ALICE commissioning*. J. Phys. Conf. Ser. 219, 032033 (2010).
- 3. Alignment of the ALICE Inner Tracking System with cosmic-ray tracks. JINST 5, P03003 (2010).

Backup slides

Участники эксперимента от ЛРЯФ

Участники эксперимента ALICE от ЛРЯФ:

- В. Самсонов, д.ф.-м.н., зав. лаб.
- М. Жалов, к.ф.-м.н., внс
- В. Никулин, к.ф.-м.н., снс
- Е. Крышень, нс
- М. Малаев, аспирант
- В. Иванов, к.ф.-м.н., снс
- М. Мифтахов, вед. инженер
- Е. Рощин, вед. инженер
- + В. Рябов, д.ф.-м.н., внс
- + Ю. Рябов, к.ф.-м.н., снс
- + В. Баублис, к.ф.-м.н., снс

Смены в 2010 году (fair share 0.9%) – 136 смен:

	Тип смены	Число смен
Михаил Малаев	DAQ+Trigger	13
Крышень Евгений	Shift leader	30
Никулин Владимир	Мюонный спектрометр	45
Итого		80

Доклады ЛРЯФ в 2010 году

- 1. 31.05.2010. V. Nikulin. *Coherent photoproduction of J/psi in pp UPC's at ALICE at 3.5 TeV.* Dimuon meeting. <u>http://indico.cern.ch/conferenceDisplay.py?confld=95145</u>
- 2. 25.06.2010. E. Kryshen. *Dimuon production in coherent pp events: trigger issues.* Trigger group meeting: <u>http://indico.cern.ch/conferenceDisplay.py?confld=79299</u>
- 3. 29.06.2010. E. Kryshen. *Dimuon production in coherent pp events: prospects and first results.* Diffractive group meeting: <u>http://indico.cern.ch/conferenceDisplay.py?confld=97187</u>
- 4. 29.06.2010. E. Kryshen. *Dimuon production in coherent pp events: prospects and first results.* PWG3 meeting: <u>http://indico.cern.ch/conferenceDisplay.py?confld=99115</u>
- 5. 13.07.2010. M. Zhalov. *Vector meson photoproduction in pA and pp ultraperipheral collisions at LHC.* CERN Heavy Ion Forum: <u>http://indico.cern.ch/conferenceDisplay.py?confld=101009</u>
- 6. 30.07.2010. E. Kryshen. *Trigger DQM.* Trigger group meeting: <u>http://indico.cern.ch/conferenceDisplay.py?confld=100679</u>
- 7. 06.08.2010. M. Malaev. News on f0 analysis.
 Resonance meeting: <u>http://indico.cern.ch/conferenceDisplay.py?confld=103535</u>
- 13.08.2010. E. Kryshen. *Trigger DQM.* Trigger group meeting: <u>http://indico.cern.ch/conferenceDisplay.py?confld=100681</u>
- 9. 27.08.2010. E. Kryshen. *Trigger DQM update.* Trigger group meeting: <u>http://indico.cern.ch/conferenceDisplay.py?confld=100683</u>
- 10. 17.09.2010. E. Kryshen. *Trigger DQM update.* Trigger group meeting: <u>http://indico.cern.ch/conferenceDisplay.py?confld=100702</u>
- 11. 09.11.2010. E. Kryshen. *Exclusive J/psi production in pp events.* Diffractive group meeting: <u>http://indico.cern.ch/conferenceDisplay.py?confld=112560</u>
- 12. 12.11.2010. E. Kryshen. *Trigger DQM.* Trigger group meeting: <u>http://indico.cern.ch/conferenceDisplay.py?confld=100710</u>
- 13. 14.11.2010. E. Kryshen. Intersection of trigger classes.
 First Heavy Ion Physics meeting. <u>http://indico.cern.ch/conferenceDisplay.py?confld=113454</u>
- 14. 17.11.2010 E. Kryshen. *J/psi in diffractive events.* Dimuon meeting: <u>http://indico.cern.ch/conferenceDisplay.py?confld=113249</u>

Efficiency and PID plots

Efficiency and PID plots

Uncertainty	$dN_{ch}/d\eta$ analysis		$P(N_{ch})$ analysis	
	$0.9 \mathrm{TeV}$	2.36 TeV	$0.9 \mathrm{TeV}$	2.36 TeV
Tracklet selection cuts	negl.	negl.	negl.	negl.
Material budget	negl.	negl.	negl.	negl.
Misalignment	negl.	negl.	negl.	negl.
Particle composition	0.5 - 1.0%	0.5 - 1.0%	included in detector efficiency	
Transverse-momentum spectrum	0.5%	0.5%	included in detector efficiency	
Contribution of diffraction (INEL)	0.7%	2.6%	3-0% (0-5)	5-0% (0-5)
Contribution of diffraction (NSD)	2.8%	2.1%	24-0 % (0-10)	12-0% (0-10)
Event-generator dependence (INEL)	+1.7%	+5.9%	8-0% (0-5)	25-0% (0-10)
Event-generator dependence (NSD)	-0.5%	+2.6%	3-5-1% (0-10-40)	32-8-2% (0-10-40)
Detector efficiency	1.5%	1.5%	2-4-15 % (0-20-40)	3-0-9 % (0-8-40)
SPD triggering efficiency	negl.	negl.	negl.	negl.
VZERO triggering efficiency (INEL)	negl.	n/a	negl.	n/a
VZERO triggering efficiency (NSD)	0.5 %	n/a	1%	n/a
Background events	negl.	negl.	negl.	negl.
Total (INEL)	$^{+2.5}_{-1.8}$ %	$^{+6.7}_{-3.1}$ %	9-4-15 % (0-20-40)	25-0-9% (0-10-40)
Total (NSD)	+3.3 %	$^{+3.7}_{-2.7}\%$	24-5-15 % (0-10-40)	32-8-9% (0-10-40)