
Ю. Нарышкин

High Energy Storage Ring

Parameters of HESR

- Injection of at 3.8 GeV/c
- Momentum range (1.5-14.5 GeV/c)
- Storage ring for internal target operation
- Luminosity up to L~ 2x10³² cm⁻²s⁻¹
- Beam cooling (stochastic & electron)

$$t_{exp}$$
= 2 h
 t_{prep} = 5 min

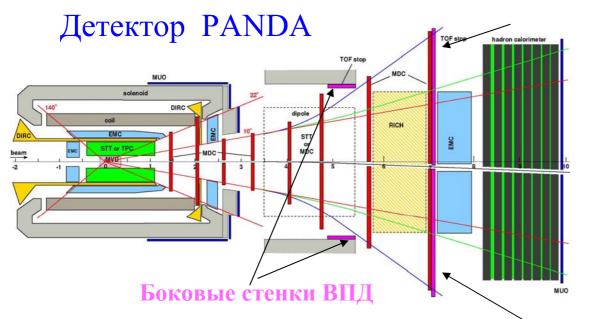
High luminosity mode: $L = 2x10^{32}$ [cm⁻²s⁻¹], $\sigma_p/p \sim 10^{-4}$ High resolution mode: $L = 2x10^{31} \text{ [cm}^{-2}\text{s}^{-1]}, \ \sigma_p/p \le 2 \cdot 10^{-5}$

Основные пункты физической программы эксперимента

Charmonium (cc-bar) Spectroscopy

Unprecedented precise measurements of masses, widths and BR

Exotic states


Nucleon Structure

Proton time-like form factors $pp \rightarrow e^+e^-$

Hyperon production and polarization $pp \to \overline{\Lambda}\Lambda, pp \to \Xi\Xi$

Nuclear Physics: Strangeness Sector

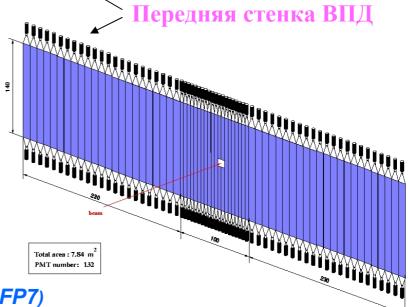
Double Hypernuclei production via Ξ - capture $pp \to \Xi^+ \Xi^-$

Угловой аксептанс переднего спектрометра:

 \pm 5 $^{\circ}$ по вертикали

 \pm 10 0 по горизонтали

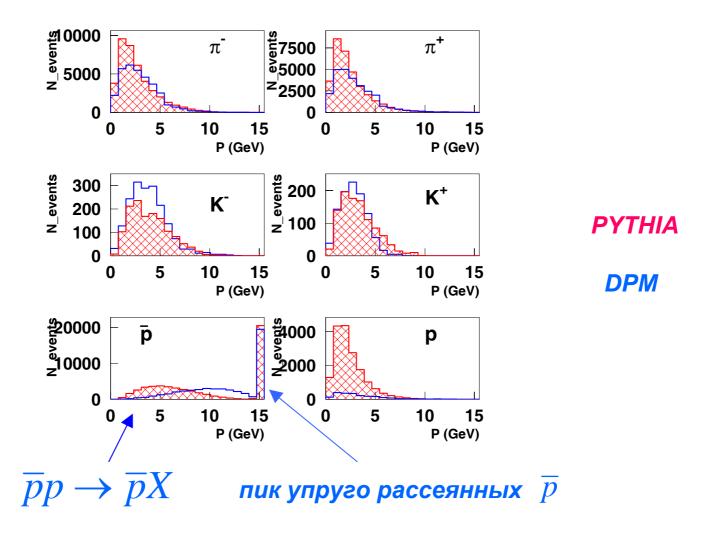
- передняя стенка


140х5х1.5 см³, 20 пластин, 140х10х1.5 см³, 46 пластин

- боковые стенки, внутри дипольного магнита 100x10x1.5 cm³, 14 пластин в каждой стенке изготовлены из пластикового сцинтиллятора BC408.

Требуемое временное разрешение ВПД не хуже 100 пс

ФЭУ R4998 (для 5 cm пластин) ФЭУ R2083 (для 10 cm пластин)


(SiPM для боковых стенок ВПД. European grant FP7)

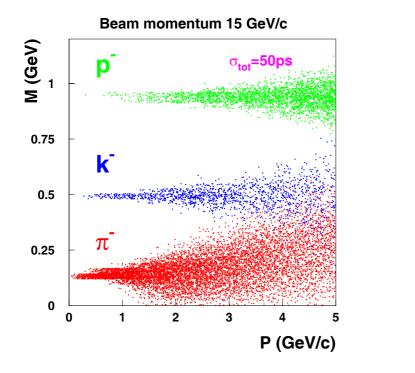
Идентификация частиц в переднем спектрометре

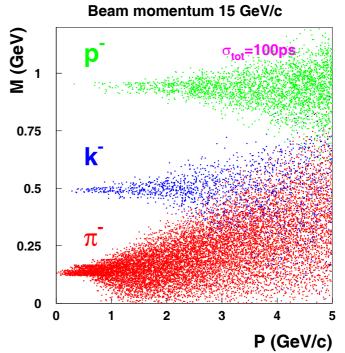
- ВПД хорошо разделяет пионы от каонов до импульсов 3 Гэв/с каоны от протонов до импульсов 4 Гэв/с
- RICH (HERMES) хорошо идентифицирует пионы начиная с импульса 2 Гэв/с, протоны с импульса 4 Гэв/с и каоны с импульса 3Гэв/с
- Идентификация адронов во всем импульсном интервале полностью обеспечивается комбинацией ВПД/RICH

Монте-Карло моделирование p_{beam}=15 Гэв/с

Mass reconstruction

no magnetic field used in simulation (track is assumed to be a straight line)


$$m = p \sqrt{\frac{t^2}{t_c^2} - 1}$$


$$t_c = L/c$$

$$(c = 1)$$

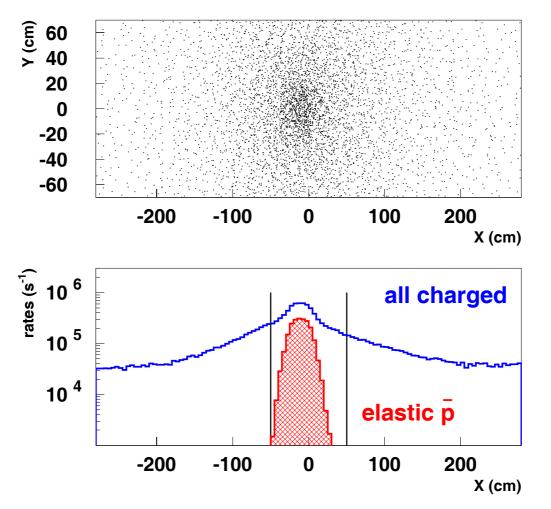
$$L \text{ is track lenght}$$

$$\frac{\delta m}{m} = \sqrt{\left(\frac{\delta p}{p}\right)^2 + \gamma^4 \left(\frac{\delta t}{t}\right)^2}$$

Эффективное разделение пионов от каонов возможно до импульса частиц 3 Гэв/с, а разделение каонов от протонов до импульса 4 GeV/с Ю. Нарышкин, Научная сессия ОФВЭ, 24 Декабря 2008 г.

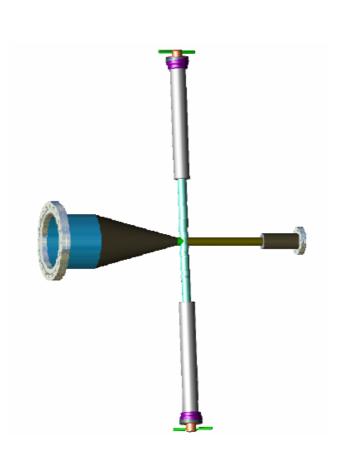
Загрузки переднего спектрометра при различных значениях импульса частиц пучка

Загрузки рассчины при светимости 2•1032 см2/с


Количество генерированных событий

Импульс пучка (GeV/c)	σ _{tot} (mbarn)	4π rates (1/sec)	π± (1/sec)	K± (1/sec)	Proton (1/sec)	Pbar (1/sec) (elastic)
2	90	1.8•10 ⁷	7.17•10 ⁶	6.47•10 ⁴	2.23•10 ⁶	2.25•10 ⁶ (1.69•10 ⁶)
5	64.8	1.3•10 ⁷	5.4•10 ⁶	6•10 ⁴	1.37•10 ⁶	1.36•10 ⁶ (6.94•10 ⁵)
15	50.8	1•10 ⁷	4.15•10 ⁶	1.48•10 ⁵	9.16•10 ⁵	9.18•10 ⁵ (3.21•10 ⁵)

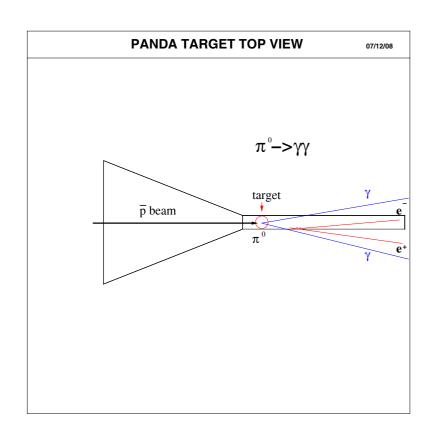
Загрузки переднего спектрометра

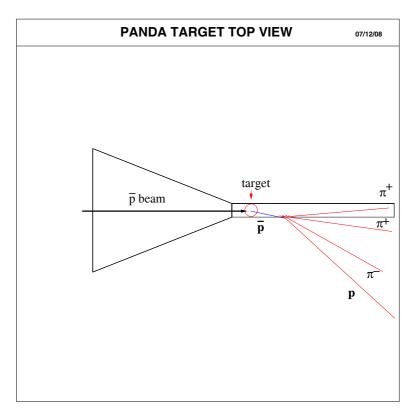

Импульс пучка <i>(GeV/c)</i>	Forward rates (1/sec)	π± (1/sec)	K± (1/sec)	Proton (1/sec)	Pbar (1/sec) <mark>(elastic)</mark>
2	1.8•10 ⁶	3.9•10⁵	2•10³	1.2•104	1.07•10 ⁶ (1•10 ⁶)
5	2.17•10 ⁶	6•10 ⁵	7.8•10 ³	3.8•104	9.5•10 ⁵ (6.75•10 ⁵)
15	2.93•10 ⁶	9.56•10 ⁵	4.7•10 ⁴	3.2•10 ⁴	8.2•10 ⁵ (3.22•10 ⁵)

Загрузки передней стенки ВПД при импульсе пучка 15 Гэв/с

Шаг гистограммы выбран равным ширине центральных пластин (5 см)

Источники фоновой загрузки

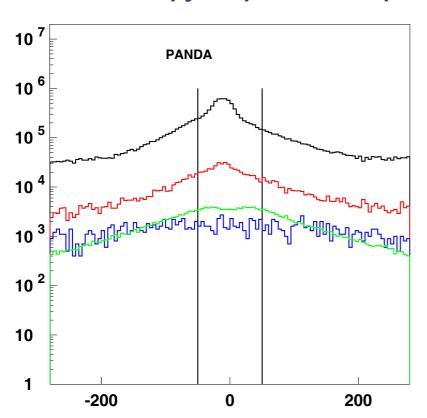



- рождение частиц на стенках вакуумного тракта
- ightharpoonup регистрация ho квантов от распада ($\pi^0
 ightharpoonup \gamma \gamma$) в сцинтилляторах
- **рассеяние пучка на остаточном газе**
- рассеяние частиц гало пучка

Вакуумная система в области мишени

- Все компоненты изготовлены из Ті
- Толщина труб маленького диаметра (20 мм) и конуса равны 200 μm
- Толщина труб большого диаметра (64,110 мм) равна 500 μm

Примеры фоновых событий

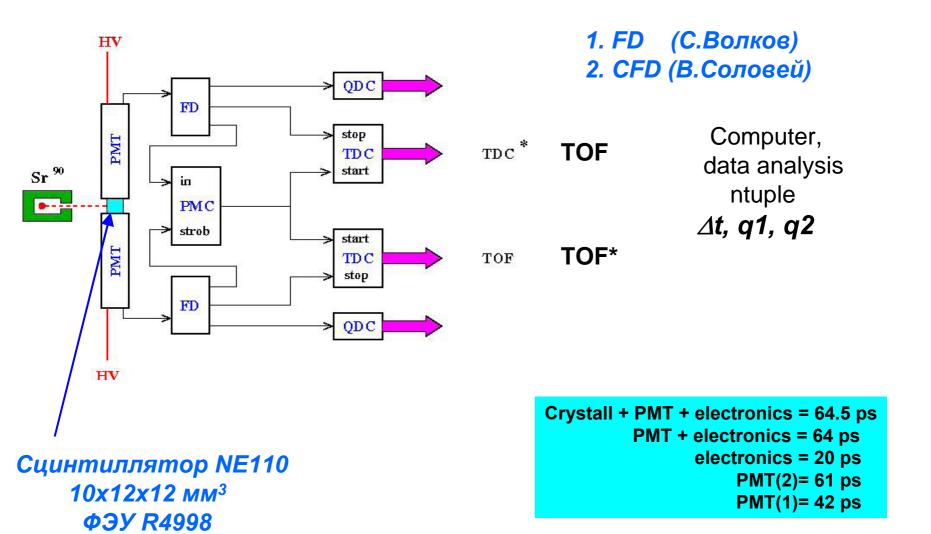


Рождение e+e- пар на трубах вакуумного тракта Рождение адронов на трубах вакуумного тракта

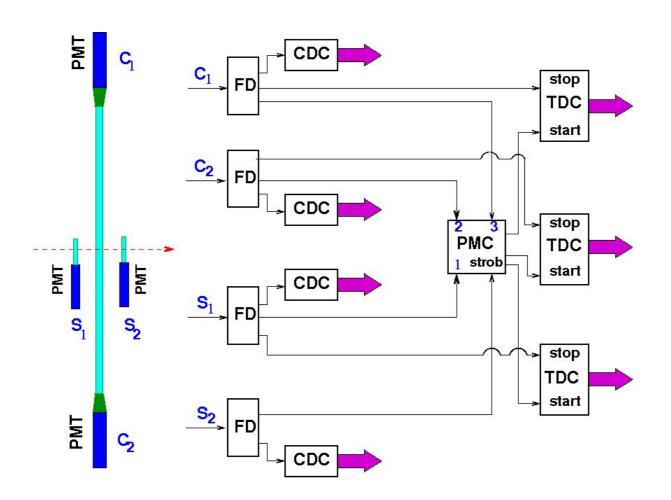
Загрузки передней стенки ВПД при импульсе пучка 15 Гэв/с

Загрузки рассчины при светимости 2•10³² см²/с

Шаг гистограммы выбран равным ширине центральных пластин (5 см)


все заряженные частицы

заряженные частицы образованные при взаимодействии в трубах вакуумного тракта


 ${
m e^+e^-}$ пары рожденные γ -квантом от распада ($\pi^0 {
ightarrow} \gamma \gamma \gamma$) в трубах вакуумного тракта

e+e- пары рожденные γ –квантом B сцинтилляторе $B\Pi \Box$

Тестова я станция (прототип)

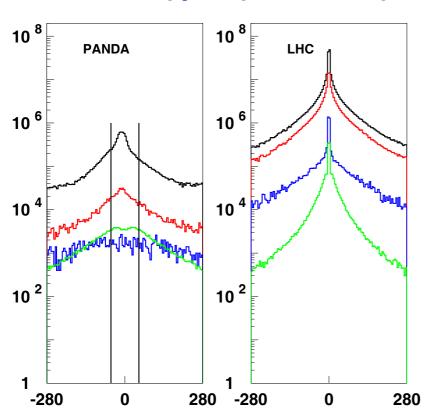
Тестова я станция

Ближайшие планы

Монте-Карло моделирование:

- Продолжение работ по моделированию фоновой загрузки детектора с целью выработрки рекомендаций для конструкции вакуумного тракта.
- Продолжение моделирования процессов распространения и поглощения света в материале сцинтиллятора и световодов с целью оптимизации их размеров и формы.
- Математическое моделирование способности ВПД (совместно с RICH и другими детекторами) обеспечить надежную идентификацию адронов (пионов, каонов, протонов, анти-протонов) в широком интервале импульсов; моделирование различных физических каналов, например:

$$pp \to \overline{\Lambda}\Lambda, \ pp \to \overline{\Lambda}_c\Lambda_c, \ pp \to \overline{\Omega}\Omega$$


Создание прототипа детектора:

- создание тестовой станции для экспериментального исследования характеристик сцинтилляционного детектора. На основании проведенных выше рассчетов разработка прототипов ВПД. Требуется электроника обладающая высоким временным разрешением!
- Разработка TDR для ВПД, его защита в 2009 году.
- Испытания на пучке

Back up slides

Загрузки передней стенки ВПД при импульсе пучка 15 Гэв/с

Загрузки рассчины при светимости 2•10³² см²/с

Шаг гистограммы выбран равным ширине центральных пластин (5 см)

все заряженные частицы

заряженные частицы образованные при взаимодействии в трубах вакуумного тракта

 e^+e^- рожденные γ от распада ($\pi^0 \rightarrow \gamma \gamma$) в трубах вакуумного тракта

Рождение фотоном e⁺e⁻ пар в Сцинтилляторе ВПД

> PANDA @ (p-bar,p) 15 GeV LHC @ (p,p) 7 TeV