ОФВЭ в 2006 году

ЛАБОРАТОРИИ ОФВЭ

Лаб. физики элементарных частиц

Лаб.короткоживущих ядер

Лаб.мезонной физики

Лаб.малонуклонных систем

Лаб.мезонной физики конденсированных сред

Лаб.релятивистской ядерной физики

Лаб.физики и техники ускорителей

Лаб.мезоатомов

Лаб.редких распадов

Лаб.адронной физики

Лаб. криогенной и сверхпроводящей

техники

Г.Д.Алхазов

В.Н.Пантелеев

В.В.Сумачев

С.Л.Белостоцкий

В.П.Коптев

В.М.Самсонов

Г.А.Рябов

Ю.М.Иванов

В.А.Гордеев

О.Е.Федин

А.А.Васильев

ФИЗИЧЕСКИЕ ГРУППЫ

Группа мезоядерных реакций Г.Г.Семенчук
Группа ядерных исследований Д.М.Селиверстов
Группа поляризационных эффектов В.Г.Вовченко
Группа прикладной радиохимии Г.Н.Шапкин
Группа детекторов В-физики Б.В.Бочин

НАУЧНО-ТЕХНИЧЕСКИЕ ПОДРАЗДЕЛЕНИЯ

Отдел радиоэлектроники Отдел трековых детекторов Отдел вычислительных систем Отдел мюонных камер В.Л.Головцов А.Г.Крившич А.Е.Шевель В.С.Козлов

Централизованное производство ОФВЭ

Е.А.Филимонов В.И.Ясюкевич

Ускорительный отдел Группа обработки информации и автоматизации 8 служб ОФВЭ Н.К.Абросимов

С.А.Артамонов

АДМИНИСТРАЦИЯ ОФВЭ

А.А.Воробьев

Д.М.Селиверстов зам.директора А.В.Ханзадеев зам.директора В.Л.Головцов зам.директора Л.С.Иванова зам.директора

В.С.Козлов главный инженер

Е.А.Филимонов зам.гл.инженер

В.А. Гордеев ученый секретарь

П.Ф.Никитина пом. директора по межд.связям

ЧИСЛЕННОСТЬ ОФВЭ

2000 год	436
2001 год	427
2002 год	410
2003 год	407
2004 год	403
2005 год	410
2006 год	361

153 научных сотрудника, из них 18 докторов наук 91 кандидат наук 111 ИТР 97 рабочих и лаборантов

Средняя зарплата200520067030 руб.9550 руб.

БЮДЖЕТНОЕ ФИНАНСИРОВАНИЕ

	2005	2006
LHC (БАК)	9580	7700
Школа	409	510
Ун.уст.	3000	5000
Феникс	500	500
Мюон	500	
РФФИ	720	650
РАН- ФЯФ		8950
РАН- Бюджет		3750
РАН- контракт	11500	
Всего т.руб.	26209	27060

контракты и договоры

Германия, США, Швейцария, Италия, Россия

	2005	2006
\$	204 081	14000
EURO	44 730	52250
CHF	66 000	-
Руб.		1120000
Всего:	9 млн.	3.5 млн.руб

НАУЧНЫЕ СЕМИНАРЫ

Проведено 20 семинаров

Защита диссертаций

- В.Л. Головцов к.ф.м.н
- С.М. Микиртычьянц к.ф.м.н
- И.Б. Смирнов к.ф.м.н
- С.А. Елисеев к.ф.м.н

ПЕЧАТНЫЕ РАБОТЫ

Опубликовано:

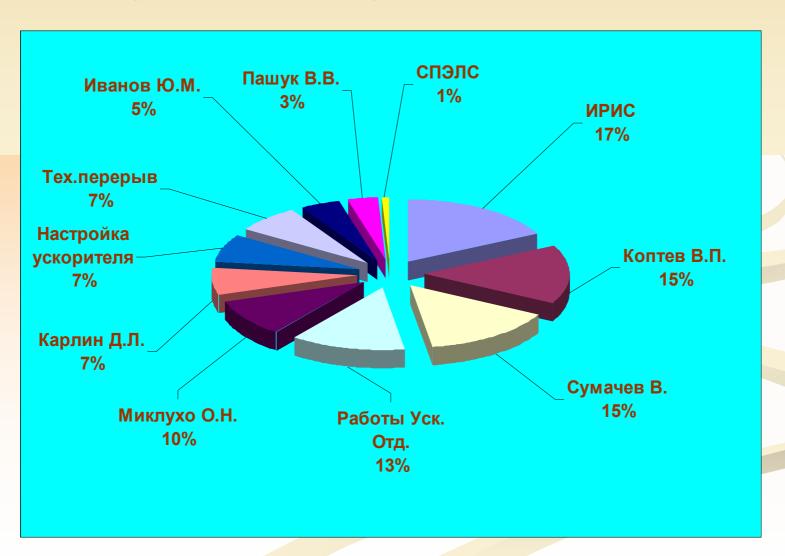
•в иностранных	
научных журналах	55 статей
•в российских	
научных журналах	10

Издано препринтов	16
В материалах конференций	26
Принято к публикации	28

Зарубежные командировки

- 268 выездов за границу
- 140 человек
- Швейцария
- Германия
- **США**
- п Италия п п

ИМПОРТ - ЭКСПОРТ


Год	Импорт, руб.	Экспорт, руб.
2004	2 885 730	603 000
2005	12 554 680	26 341 572
2006	5 277 422	23 906 817

CERN
PSI, Basel
FNAL (США))
Darmstadt (Германия)

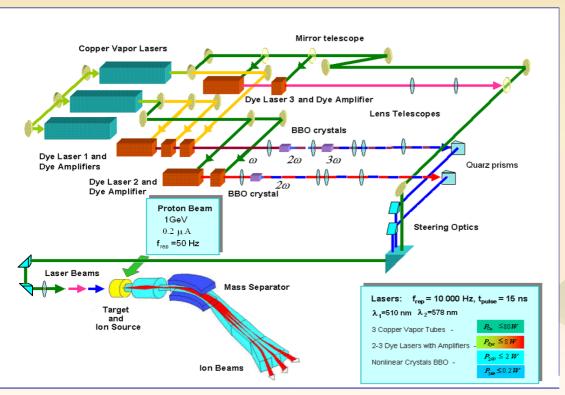
DESY, GSI (Германия) Legnaro (Италия) Saclay (Франция)

Синхроциклотрон

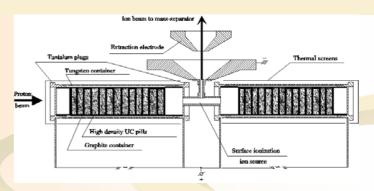
работа на эксперимент 2800 часов

Протонная терапия

- Число облучений за год 27
- Общее число пациентов 1300



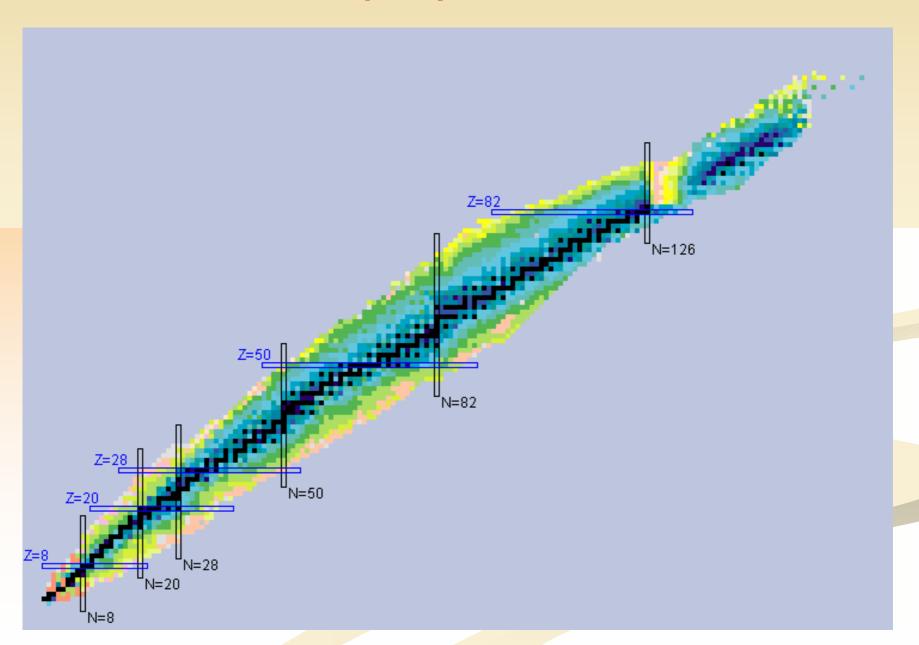
Изохронный циклотрон ГИЦ


Малые ускорители

ИРИС

Новая лазерная система резонансной ионизации короткоживущих радионуклидов

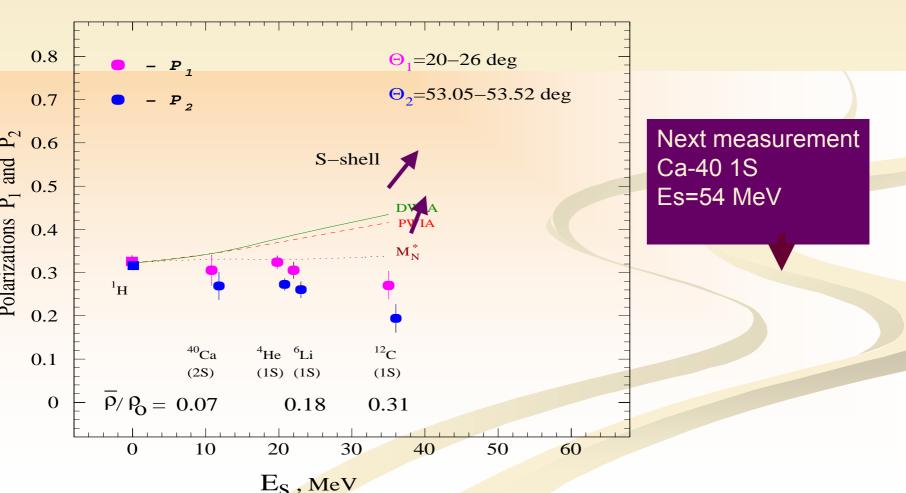
Мишенное устройство из карбида урана высокой плотности (91 г/см²)



GANIL, проект SPIRAL-II, Франция

Jyvaskyla ,Финляндия

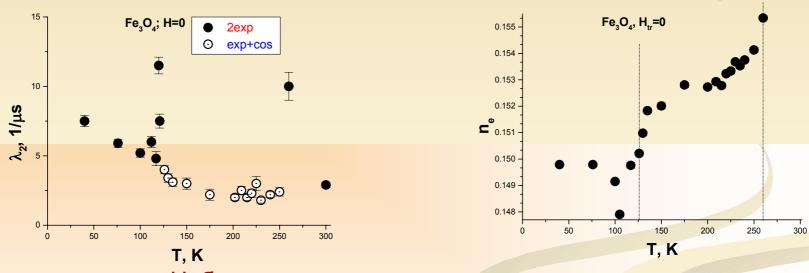
- •LNL (Legnaro), проект SPES, Италия
- •Orsay (Paris), проект ALTO, Франция CERN, лаборатория ISOLDE, Швейцария


Карта нуклидов

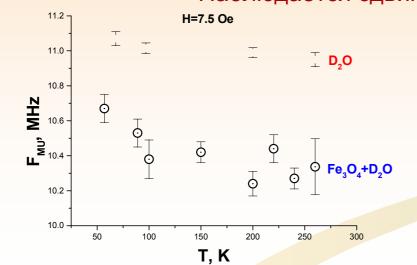
Влияние ядерной среды на рN-взаимодействие

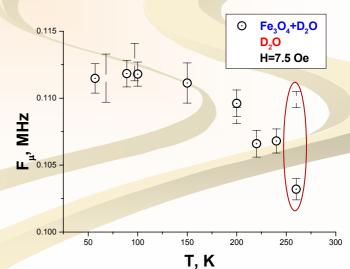
р2р квазиупругое рассеяние на синхроциклотроне ПИЯФ

С участием физиков из Японии

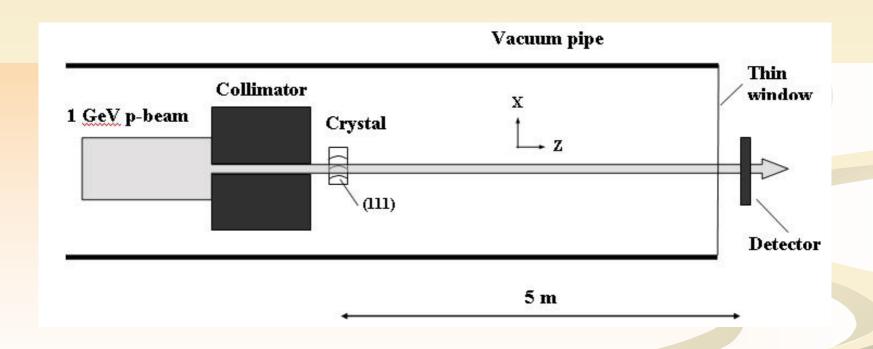

Исследование феррожидкости ($D_2O+PAV+Fe_3O_4$):

Работа проводилась совместно с ЛЯП ОИЯИ.

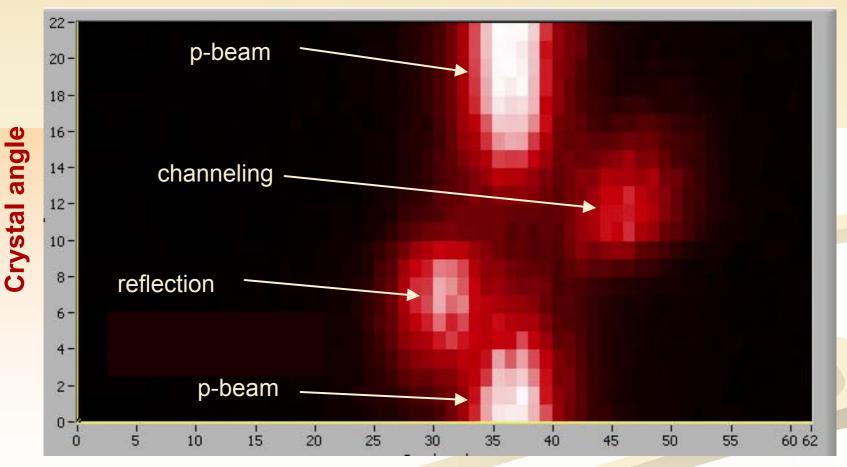

Размер гранул Fe_3O_4 50 нм; 5% объема.


В наноструктурном образце

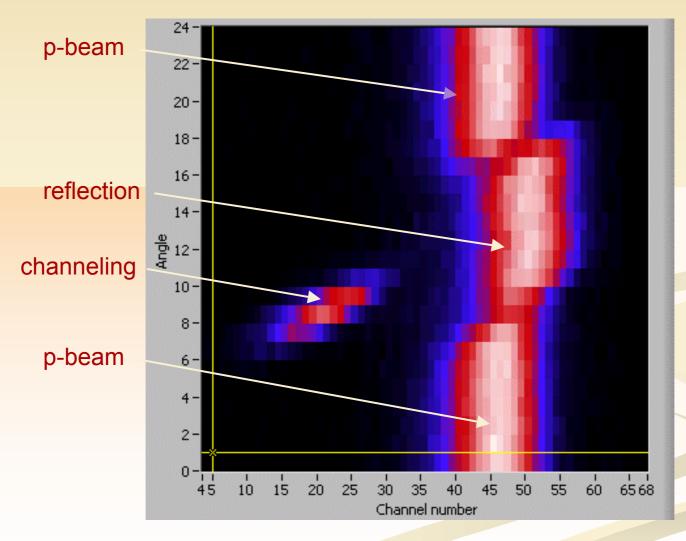
проявляются оба перехода, которые наблюдаются в монокристалле Fe₃O₄:



Наблюдается сдвиг частот мюона и мюония:



Объемное отражение частиц высоких энергий от изогнутого кристалла



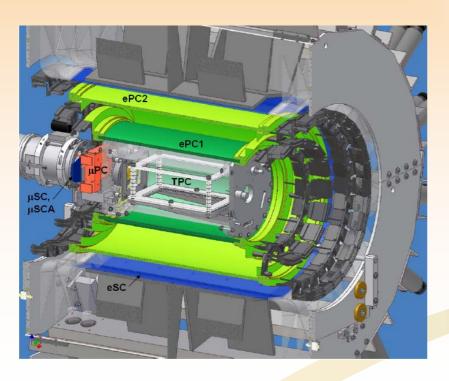
Experiment with 1 GeV protons (Gatchina)

Channel number (step 200µm)

Experiment with 400 GeV protons (CERN)

Эффективность отражения больше 98%

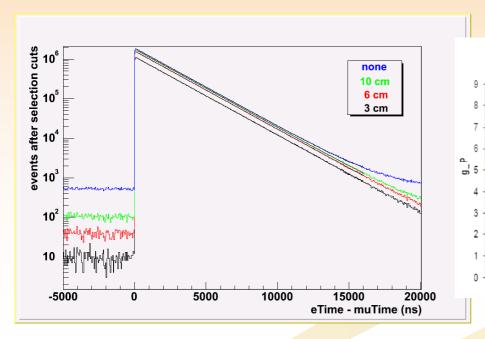
Измерение скорости µ-захвата в водороде

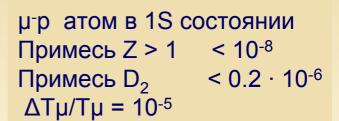

$$\mu$$
- $p \rightarrow n + v$

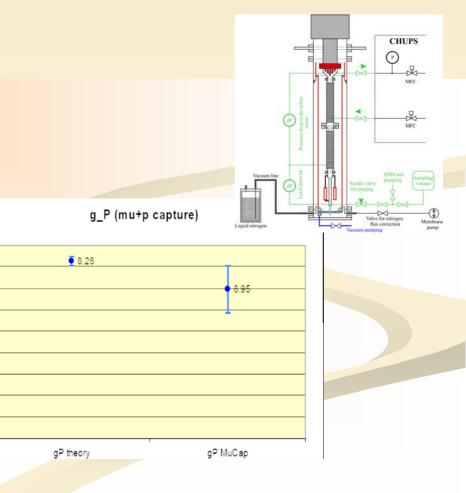
Form-factors of nucleonic weak current

 g_V , g_A , g_M , g_P

 $\Lambda_{capture} \rightarrow g_P$

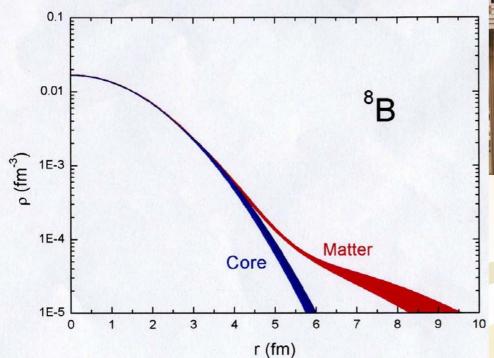

Chiral perturbation theory $g_p = 8.26 \pm 0.23$





$$\begin{array}{ll} \mu^{\scriptscriptstyle -}p \rightarrow n + \nu_{\mu} & Br = 10^{\scriptscriptstyle -3} \\ \\ \mu^{\scriptscriptstyle -} \rightarrow e^{\scriptscriptstyle -} + \nu_{\mu} + \overline{\nu_e} \\ \\ \mu^+ \rightarrow e^+ + \overline{\nu_{\mu}} + \nu_e \end{array}$$

$$T_{\mu^+}$$
 - T_{μ^-} \longrightarrow $\Lambda_{capture}$



Экзотические ядра. GSI

4-He, 6-He, 8-He 6-Li, 8-Li, 9-Li, 11-Li 8-Be, 9-Be, 11-Be, 12-Be, 14-Be

8-B, 13-B → 19-B 14-C →19-C

Исследование структуры нуклона

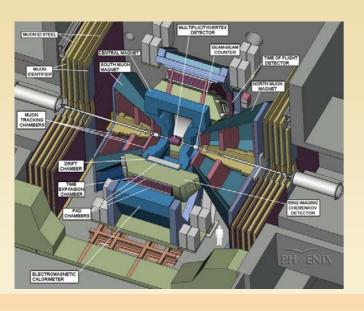
 $\pi p \rightarrow \pi p$ MT3 Φ

 $πp \rightarrow ηn$ ΠИЯΦ

үр → Майнц, Бонн

pp → ANKE (Юлих)

γγ → L3

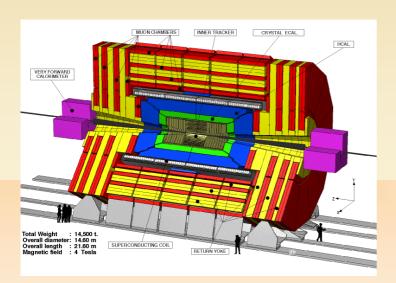

ep → HERMES

Совместный фазовый анализ

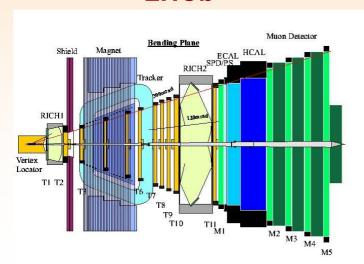
D-Zero

Наиболее интересные результаты:

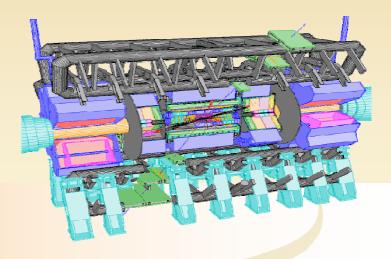
- Установление верхней и нижней границ частоты осцилляций ${\bf B}_{\rm s}^{\ 0}$ мезона.
- Получение свидетельства о рождении одиночного t-кварка.


PHENIX

Измерены выходы мезонов:


- ❖ φ мезон (K⁺K⁻ канал) р+р, d+Au, Au+Au взаимодействиях
- ❖ ω мезон ($π^0π^+π^-$ и $π^0γ$ канал) p+p (Run3 + Run5), d+Au, Au+Au взаимодейств.
- ❖ η мезон ($\pi^0\pi^+\pi^-$ канал) р+р (Run3), d+Au взаимодейств (сравн. с $\gamma\gamma$ каналом).
- ❖ K_s^0 мезон ($\pi^0\pi^0$ канал) р+р (Run3+Run5) и d+Au взаимодействиях.
- ❖ φ, ω мезоны (е⁻е⁺канал) Au+Au и d+Au взаимодействия.
- **❖** φ мезон (К⁻К⁺канал) температура, интегральный выход.
- $\omega, \, K_s{}^0$ мезоны (адронные каналы) отношения к π^0
- ❖ ф, ω мезоны (адронные каналы) R_{AA} и R_{dA}
- ❖ Ф, Ф мезоны (адронные каналы) изучение модификаций массы и ширины

LHC


CMS

LHCb

ATLAS

ALICE

НОВЫЕ ПРОЕКТЫ GSI


Panda

Detector

Septum magnet Kicker Electron cooler

Injection

CBM

NUSTAR

EXEL MATS R3B ILIMA LASERSPEC