КОМПАКТНЫЕ ИСТОЧНИКИ НЕЙТРОНОВ: DARIA vs NG

И.А.Митропольский Лаборатория ядерной спектроскопии

«С возрастом желание заработать переходит в желание сэкономить» М.М.Жванецкий

Компактные источники нейтронов

• Радиоизотопные источники:

спонтанное деление (244Cm, 252Cf), ≈10^{7÷9} n/s, 3÷4 нейтрона на одно деление, T_{1/2}=2.6 y, 15÷20 k\$ (α,n) реакция (241Pu-Be источник), ≈10^{6÷8} n/s, 30 нейтронов на 10⁶ альфа-распадов, T_{1/2}=14.3 y, ≤1 млн руб. (γ,n) реакция (2H, 9Be)

• Нейтронные генераторы:

«запаянные нейтронные трубки», ≤10⁸ n/s вакуумные нейтронные генераторы, ≥10¹¹ n/s

Physical Backgrounds

D(d,n)³He, *E*_n≈2.5 MeV 1934 г. Э.Резерфорд и др.

T(d,n)⁴He, *E*_n≈14 MeV 1951 г. В.А.Цукерман, А.А.Бриш

Нейтронная трубка

Схематическое изображение газонаполненной нейтронной трубки.

1- Металлический баллон. 2- Керамический баллон. 3— Электровводы. 4— Нить накаливания. 5— Хранилище газа. 6— Торцевой катод. 7— Анод. 8— Катод. 9— Фокусирующий электрод. 10— Ускоряющий электрод. 11— Мишень. 12— Резистор смещения. 13— Магнит.

В состоянии хранения давление внутри 10⁻⁷ мм.рт.ст.

Через нить накаливания пропускают ток (6в, 300мА). В результате разогрева гидрит Ті начинает отдавать содержащейся в нем газ (50% - D, 50% - T). Давление в трубке поднимается до 10⁻² мм.рт.ст. Ионы D+T наполняют трубку.

На анод подается импульс положительного относительно корпуса напряжения 2кВ. Разница напряжений между торцевым катодом и анодом вырывает электроны к аноду. Магнитное поле позволяет двигаться электронам только в субпродольном направлении. Катоды отрицательным потенциалом относительно анода запирают движение электронов внутри анода – «электронная ловушка»

Электроны в «электронной ловушке» ионизируют газ (D+T). На мишень прикладывается относительно корпуса отрицательное напряжение -100кВ. Часть ионизированных атомов газа через отверстие в катоде ускоряется и попадает на мишень. Начинается реакция D+T=He+n -- трубка начинает излучать нейтроны.

Схема нейтронного генератора

Ускоритель типа Кокрофта-Уолтона.

Target - TiT_{1.5-1.8}

Анализ на основе пороговых реакций с нейтронами Reactions: (n,γ); (n,p); (n,d); (n,2n); (n,α) et al. ¹⁴N(n,2n)¹³N, *E*_n>10 MeV, *E*_Y=2.31 MeV **Метод меченных нейтронов**

$14N + n \rightarrow 15N^* \rightarrow 15N + \gamma (10.8 \text{ M}_{3}B)$

Регистрация мгновенного гамма-излучения

желтый импульс – альфа-событие (длительность импульса ~40 нс), голубой импульс – гамма-событие (длительность импульса ~150 нс), т₃ – разница во времени между импульсами, нс .

РАТЭК УВП-1103

	Процент		
	верных	Процент	Среднее время
	обнаружений	пропусков	измерения при
	BB		обнаружение, с
Текстильные изделия и TNT	99.8%	0.2%	84.3
Цифровая электроника и TNT	99.8%	0.2%	131.7
Бумажные изделия и TNT	99.8%	0.2%	94.1
Бутылка воды и TNT	99.8%	0.2%	78.3
Мыло / шампунь и TNT	99.6%	0.4%	98.1
Пустая сумка и TNT	100.0%	0.0%	71.5
Сухое молоко и ТМТ	100.0%	0.0%	61.8
Стиральный порошок и ТМТ	100.0%	0.0%	64.5

ВНИИЭФА "NG-150"

At the PNPI there was neutron generator NG-200

Измерение энергии ядер отдачи при рассеянии быстрых нейтронов

Схема измерения

Определение содержания и профилей концентрации изотопов водорода и гелия в конструкционных материалах

Нейтронный генератор в ПИЯФ

Standard LANSAR models

Model	DL-1	DL-2	DL-4	PL-4	PL-7	PL-11
Accelerated particle	d+	d+	d+	p+	p+	p+
Beam energy (nominal, MeV)	0.9	2.1	3.9	3.9	7.0	11.0
Neutron yield* (n/sec/µA)	7.8 x 10 ⁷	9.0 × 10 ⁸	3.2 x 10 ⁹	1.3 x 10 ⁹	9.0 x 10 ⁹	3.0 x 10 ¹⁰
Beam current/pulse (mA)	10	10	15	40	15	40
Beam pulse width (µsec)	30-120	30-120	30-120	25-215	35-120	35-215
Pulse repetition rate (Hz)	1-120	1-120	1-120	1-120	1-120	1-120
Maximum target current (µA)	140	140	210	1000	210	1000
Maximum target yield (n/sec/ 4π)	1.0 x 10 ¹⁰	1.0 × 10 ¹¹	6.0 x 10 ¹¹	1.3 x 10 ¹²	1.9 x 10 ¹²	3.0 x 10 ¹³
Estimated thermalization constant (K)	200	270	320	50	100	150
Maximum thermal flux (n/cm ² /sec)	5.0 x 10 ⁷	3.7 x 10 ⁸	1.9 x 10 ⁹	2.6 x 10 ¹⁰	1.9 x 10 ¹⁰	2.0 x 10 ¹¹
Accelerator length (m)	1.35	2.30	3.66	4.20	4.50	6.0
Accelerator weight (kg)	250	800	1600	3000	2000	3500
Facility electrical requirement (kVA)	10	20	45	80	25	130

Спасибо за внимание

Mitropolsky_IA@pnpi.nrcki.ru