PHENOMENOLOGY OF COHERENT ELECTROPRODUCTION OF VECTOR MESONS ON SPINLESS TARGET
 S.I. Manaenkov
 HEPD Seminar
 Gatchina, 2023, June 6
 Contents

- Introduction
- Kinematics
- Formalism
- Basic Equations
- Solution of Basic Equations
- Comparison of SDME and Amplitude Methods
- Virtual-photon Longitudinal-to-transverse Cross-section Ratio
- Summary

Introduction

- Vector-meson electroproduction provides information on the reaction mechanism and target structure
- Electroproduction of Vector mesons is one of two basic processes for extraction of Generalized Parton Distributions (GPD)
Radyushkin, Ji
- Amplitudes of of vector-meson production on nucleons at high Q^{2} and small x_{B} in leading-logarithm approximation are proportional to gluon distributions $G\left(x_{B}, Q^{2}\right)$, $\Delta G\left(x_{B}, Q^{2}\right)$.
- Usual method of data treatment is Spin-Density-Matrix-Element (SDME) method
- The alternative and more economical method is amplitude method of data processing

Kinematics

- Definition of angles

Φ is angle between production plane (\vec{q}, \vec{v}) and lepton-scattering plane $\left(\vec{k}_{e}, \vec{k}_{e}^{\prime}\right)$.
θ and ϕ are polar and azimuthal angles of π^{+}-momentum in ρ^{0}-meson rest frame

Formalism

- Reactions $e \rightarrow e^{\prime}+\gamma^{*}, \gamma^{*}\left(\lambda_{\gamma}\right)+S \rightarrow V\left(\lambda_{V}\right)+S, V=\rho^{0} \rightarrow \pi^{+}+\pi^{-}$. S is spinless nucleus.
γ^{*} is virtual photon with helicity λ_{γ} in center-of-mass (CM) $\gamma^{*} S$ system.
V denotes produced vector meson with helicity λ_{V} in CM system.
Amplitudes $F_{\lambda_{V} \lambda_{\gamma}}$ in CM system obey relations $F_{-\lambda_{V}-\lambda_{\gamma}}=(-1)^{\lambda_{V}-\lambda_{\gamma}} F_{\lambda_{V} \lambda_{\gamma}}$ due to parity conservation. Independent amplitudes are: $F_{11}, F_{10}, F_{1-1}, F_{01}, F_{00}$.
- The von Neumann Formula
$\mathcal{N} \rho_{\lambda_{V} \tilde{\lambda}_{V}}=\sum_{\lambda_{\gamma}, \tilde{\lambda}_{\gamma}} F_{\lambda_{V} \lambda_{\gamma}} F_{\tilde{\lambda}_{V} \tilde{\lambda}_{\gamma}}^{*} \varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}$
$\varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}=\varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}^{U}+P_{b} \varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}^{L}$ is spin-density matrix of virtual photon $(\operatorname{tr}\{\varrho\}=1)$
known from QED.
$\rho_{\lambda_{V} \tilde{\lambda}_{V}}$ is spin-density matrix of vector meson $(\operatorname{tr}\{\rho\}=1)$.
$\mathcal{N}=\mathcal{N}_{T}+\epsilon \mathcal{N}_{L}$ is normalized factor.
$\mathcal{N}_{T}=\left|F_{11}\right|^{2}+\left|F_{01}\right|^{2}+\left|F_{-11}\right|^{2}$,
$\mathcal{N}_{L}=\left|F_{10}\right|^{2}+\left|F_{00}\right|^{2}+\left|F_{-10}\right|^{2}$,
ϵ is flux ratio of longitudinally polarized $\left(\lambda_{\gamma}=0\right)$ virtual photons to transversely polarized $\left(\lambda_{\gamma}= \pm 1\right)$ photons produced by lepton beam.

Formalism

- Conservation of angular momentum in decay $\rho^{0} \rightarrow \pi^{+}+\pi^{-}$

$$
\left|\rho^{0} ; J=1, J_{z}=\lambda_{V}\right\rangle \rightarrow\left|\pi^{+} \pi^{-} ; L=1, L_{z}=\lambda_{V}\right\rangle \rightarrow Y_{1 \lambda_{V}}(\theta, \phi)
$$

- Angular distribution of decay pions

$$
\mathcal{N} \mathcal{W}(\Phi, \theta, \phi)=\sum_{\lambda_{V}, \tilde{\lambda}_{V}} Y_{1 \lambda_{V}}(\theta, \phi) Y_{1 \lambda_{V}}^{*}(\theta, \phi) \mathcal{N} \rho_{\lambda_{V} \tilde{\lambda}_{V}}(\Phi, \epsilon)
$$

- Angular distribution of decay pions for unpolarized beam

$$
\begin{array}{r}
\mathcal{N} \mathcal{W}^{U}(\Phi, \vartheta, \varphi)=\frac{3 \sin ^{2} \theta}{8 \pi}\left\{d_{1}+2 \eta d_{2} \cos \Phi-2 \epsilon d_{3} \cos (2 \Phi)-2 d_{4} \cos (2 \varphi)+\right. \\
\left.+2 \eta\left(d_{5} \cos (2 \varphi-\Phi)-d_{6} \cos (2 \varphi+\Phi)\right)+\epsilon d_{7} \cos (2 \varphi-2 \Phi)+\epsilon d_{8} \cos (2 \varphi+2 \Phi)\right\}+ \\
+\frac{3 \cos ^{2} \theta}{4 \pi}\left\{d_{9}+2 \eta d_{10} \cos \Phi+\epsilon d_{11} \cos (2 \Phi)\right\}-\frac{3 \sqrt{2} \sin (2 \theta)}{8 \pi}\left\{d_{12} \cos \varphi+\right. \\
\left.+\eta\left(d_{13} \cos (\varphi-\Phi)+d_{14} \cos (\varphi+\Phi)\right)+\epsilon\left(d_{15} \cos (\varphi-2 \Phi)-d_{16} \cos (\varphi+2 \Phi)\right)\right\},
\end{array}
$$

where $\eta=\sqrt{\epsilon(1+\epsilon)}$. All $d_{j}(1 \leq j \leq 16)$ can be extracted from data.

Formalism

- Angular distribution of decay pions for polarized beam

$$
\begin{array}{r}
P_{b} \mathcal{N W}^{L}(\Phi, \theta, \phi)=P_{b} \frac{3 \sin ^{2} \theta}{4 \pi}\left\{\zeta d_{17} \sin \Phi-\xi d_{18} \sin (2 \phi)-\zeta d_{19} \sin (2 \phi-\Phi)+\right. \\
\\
\left.-\zeta d_{20} \sin (2 \phi+\Phi)\right\}+P_{b} \frac{3 \cos ^{2} \theta}{2 \pi} \zeta d_{21} \sin \Phi+ \\
+P_{b} \frac{3 \sqrt{2} \sin (2 \theta)}{8 \pi}\left\{\xi d_{22} \sin \phi+\zeta\left(d_{23} \sin (\phi-\Phi)+d_{24} \sin (\phi+\Phi)\right)\right\}
\end{array}
$$

where $\zeta=\sqrt{\epsilon(1-\epsilon)}$ and $\xi=\left(1-\epsilon^{2}\right)^{\frac{1}{2}}$.
All $d_{j}(17 \leq j \leq 24)$ can be extracted from data.

Basic Equations

- Unnormalized spin-density-matrix elements (SDME) for unpolarized beam

$$
\begin{array}{r}
d_{1}=\left|F_{11}\right|^{2}+\left|F_{1-1}\right|^{2}+2 \epsilon\left|F_{10}\right|^{2}, \\
d_{2}=\operatorname{Re}\left\{\left(\mathrm{F}_{11}-\mathrm{F}_{1-1}\right) \mathrm{F}_{10}^{*}\right\}, \\
d_{3}=\operatorname{Re}\left\{\mathrm{F}_{1-1} \mathrm{~F}_{11}^{*}\right\}, \\
d_{4}=\operatorname{Re}\left\{\mathrm{F}_{1-1} \mathrm{~F}_{11}^{*}\right\}-\epsilon\left|\mathrm{F}_{10}\right|^{2}, \\
d_{5}=\operatorname{Re}\left\{\mathrm{F}_{10} \mathrm{~F}_{11}^{*}\right\}, \\
d_{6}=\operatorname{Re}\left\{\mathrm{F}_{1-1} \mathrm{~F}_{10}^{*}\right\}, \\
d_{7}=\left|F_{11}\right|^{2}, \\
d_{8}=\left|F_{1-1}\right|^{2}, \\
d_{9}=\left|F_{01}\right|^{2}+\epsilon\left|F_{00}\right|^{2}, \\
d_{10}=\operatorname{Re}\left\{\mathrm{F}_{00} \mathrm{~F}_{01}^{*}\right\}, \\
d_{11}=\left|F_{01}\right|^{2}, \\
d_{12}=\operatorname{Re}\left\{\left(\mathrm{F}_{11}-\mathrm{F}_{1-1}\right) \mathrm{F}_{01}^{*}+2 \epsilon \mathrm{~F}_{10} \mathrm{~F}_{00}^{*}\right\}, \tag{12}
\end{array}
$$

Basic Equations

- Unnormalized spin-density-matrix elements for unpolarized beam (continuation)

$$
\begin{array}{r}
d_{13}=\operatorname{Re}\left\{\mathrm{F}_{11} \mathrm{~F}_{00}^{*}+\mathrm{F}_{10} \mathrm{~F}_{01}^{*}\right\}, \\
d_{14}=\operatorname{Re}\left\{\mathrm{F}_{10} \mathrm{~F}_{01}^{*}-\mathrm{F}_{1-1} \mathrm{~F}_{00}^{*}\right\}, \\
d_{15}=\operatorname{Re}\left\{\mathrm{F}_{11} \mathrm{~F}_{01}^{*}\right\}, \\
d_{16}=\operatorname{Re}\left\{\mathrm{F}_{1-1} \mathrm{~F}_{01}^{*}\right\} . \tag{16}
\end{array}
$$

- Unnormalized spin-density-matrix elements for longitudinally polarized beam

$$
\begin{array}{r}
d_{17}=\operatorname{Im}\left\{\left(\mathrm{F}_{11}-\mathrm{F}_{1-1}\right) \mathrm{F}_{10}^{*}\right\}, \\
d_{18}=\operatorname{Im}\left\{\mathrm{F}_{1-1} \mathrm{~F}_{11}^{*}\right\}, \\
d_{19}=\operatorname{Im}\left\{\mathrm{F}_{11} \mathrm{~F}_{10}^{*}\right\}, \\
d_{20}=\operatorname{Im}\left\{\mathrm{F}_{1-1} \mathrm{~F}_{10}^{*}\right\}, \\
d_{21}=\operatorname{Im}\left\{\mathrm{F}_{01} \mathrm{~F}_{00}^{*}\right\}, \\
d_{22}=\operatorname{Im}\left\{\left(\mathrm{F}_{11}+\mathrm{F}_{1-1}\right) \mathrm{F}_{01}^{*}\right\}, \\
d_{23}=\operatorname{Im}\left\{\mathrm{F}_{11} \mathrm{~F}_{00}^{*}-\mathrm{F}_{10} \mathrm{~F}_{01}^{*}\right\}, \\
d_{24}=\operatorname{Im}\left\{\mathrm{F}_{10} \mathrm{~F}_{01}^{*}+\mathrm{F}_{1-1} \mathrm{~F}_{00}^{*}\right\} . \tag{24}
\end{array}
$$

Solution of Basic Equations

- Moduli of helicity amplitudes

$$
\begin{array}{r}
\left|F_{11}\right|^{2}=d_{7} \\
\left|F_{00}\right|^{2}=\left(d_{9}-d_{11}\right) / \epsilon \\
\left|F_{01}\right|^{2}=d_{11} \\
\left|F_{10}\right|^{2}=\left(d_{3}-d_{4}\right) / \epsilon \\
\left|F_{1-1}\right|^{2}=d_{8}
\end{array}
$$

- Ratios of amplitudes to F_{00}. Formulas can be obtained for polarized beam only.

$$
\begin{array}{r}
\frac{F_{11}}{F_{00}}=\frac{\epsilon d_{7}\left\{d_{13}-d_{14}+i\left(d_{23}+d_{24}\right)\right\}}{\left(d_{9}-d_{11}\right)\left(d_{7}+d_{3}+i d_{18}\right)} \\
\frac{F_{01}}{F_{00}}=\frac{\epsilon\left(d_{10}+i d_{21}\right)}{\left(d_{9}-d_{11}\right)} \\
\frac{F_{1-1}}{F_{00}}=\frac{\epsilon\left(d_{3}+i d_{18}\right)\left\{d_{13}-d_{14}+i\left(d_{23}+d_{24}\right)\right\}}{\left(d_{9}-d_{11}\right)\left(d_{7}+d_{3}+i d_{18}\right)} \\
d_{13}=\frac{2 d_{5}-d_{2}-i\left(d_{17}+2 d_{20}\right)}{d_{13}-d_{14}-i\left(d_{23}+d_{24}\right)}
\end{array}
$$

Solution of Basic Equations

- Ratios of helicity amplitudes to F_{11} (limit $\left.Q^{2} \rightarrow 0\right)$

$$
\begin{array}{r}
\frac{F_{00}}{F_{11}}=\frac{\left(d_{9}-d_{11}\right)\left(d_{7}+d_{3}+i d_{18}\right)}{\epsilon d_{7}\left\{d_{13}-d_{14}+i\left(d_{23}+d_{24}\right)\right\}} \\
\frac{F_{01}}{F_{11}}=\frac{d_{15}+d_{16}-i d_{22}}{d_{7}+d_{3}-i d_{18}} \\
\frac{F_{10}}{F_{11}}=\frac{d_{5}-i\left(d_{17}+d_{20}\right)}{d_{7}} \\
\frac{F_{1-1}}{F_{11}}=\frac{d_{3}+i d_{18}}{d_{7}}
\end{array}
$$

- Angular distribution normalized to unity
$\int_{0}^{2 \pi} \frac{d \Phi}{2 \pi} \int_{0}^{\pi} \sin \vartheta d \vartheta \int_{0}^{2 \pi} d \varphi \mathcal{W}(\Phi, \vartheta, \varphi)=1$.
$\mathcal{N} \mathcal{W} \rightarrow \mathcal{W}, d_{j} \rightarrow \widetilde{d}_{j}=d_{j} / \mathcal{N}, \quad \mathcal{N}=d_{1}+d_{9} . \widetilde{d}_{j}$ are called normalized SDMEs.
Formulas for amplitude ratios retain true if $d_{j} \rightarrow \widetilde{d}_{j}$.

Comparison of SDME and Amplitude Methods

- SDME method. Properties of normalized SDMEs (\tilde{d}_{j}, Schilling-Wolf SDMEs $\left.r_{\lambda_{V}}^{\alpha} \tilde{\lambda}_{V}\right)$ All SDMEs \widetilde{d}_{j} are considered as independent in a fit of experimental angular distribution. Total number of independent SDMEs \widetilde{d}_{j} is $23\left(\widetilde{d}_{1}+\widetilde{d}_{9}=1\right)$. Since \widetilde{d}_{j} can be expressed through 4 complex amplitude ratio, SDMEs \widetilde{d}_{j} are mutually dependent. There are 15 equations of constraints.
Examples: $\widetilde{d}_{2}=\widetilde{d}_{5}-\widetilde{d}_{6}, \quad\left(\widetilde{d}_{3} \widetilde{d}_{11}-\widetilde{d}_{15} \widetilde{d}_{16}\right)^{2}=\left(\widetilde{d}_{7} \widetilde{d}_{11}-\widetilde{d}_{15}^{2}\right)\left(\widetilde{d}_{8} \widetilde{d}_{11}-\widetilde{d}_{16}^{2}\right)$.
The region for SDME values which guaranties positive definiteness of angular distribution is unknown. If $\mathcal{W} \leq 0$ maximum likelihood method is inapplicable. Likelihood function is linear with respect to \widetilde{d}_{j}.
- Amplitude method

The number of real fit functions is 8 .
Four complex helicity-amplitude ratios are independent.
Angular distribution is positive for any non-zero helicity amplitudes.
Likelihood function is nonlinear with respect to amplitude ratios.

- If Monte-Carlo codes describe detector good enough results of both methods should be in agreement

Virtual-photon Longitudinal-to-transverse Cross-section Ratio

- Exact formula for virtual-photon longitudinal-to-transverse differential-cross-section ratio for vector-meson productions on spinless targets
$R \equiv \frac{d \sigma_{L}}{d t} / \frac{d \sigma_{T}}{d t}=\frac{\left|F_{10}\right|^{2}+\left|F_{00}\right|^{2}+\left|F_{-10}\right|^{2}}{\left|F_{11}\right|^{2}+\left|F_{01}\right|^{2}+\left|F_{-11}\right|^{2}}$,
$R=\frac{d_{9}-d_{11}+2\left(d_{3}-d_{4}\right)}{\epsilon\left(d_{7}+d_{8}+d_{11}\right)}$,
$R=\frac{r_{00}^{04}+r_{00}^{1}+2\left(r_{11}^{1}-r_{1-1}^{04}\right)}{\epsilon\left(2 r_{1-1}^{1}-r_{00}^{1}\right)}$.
- New approximate formula for virtual-photon longitudinal-to-transverse differential-cross-section ratio for scattering from nucleons
$R \approx \frac{r_{00}^{04}+r_{00}^{1}+2\left(r_{11}^{1}-r_{1-1}^{04}\right)}{\epsilon\left\{1-r_{00}^{04}-r_{00}^{1}-2\left(r_{11}^{1}-r_{1-1}^{04}\right)\right\}}$.
- Standard approximate formula for virtual-photon longitudinal-to-transverse differential-cross-section ratio for scattering from nucleons $R \approx R_{04}=\frac{r_{00}^{04}}{\epsilon\left\{1-r_{00}^{04}\right\}}$.

Summary

- Exact formulas for helicity-amplitude ratios in terms of spin-density-matrix elements (SDMEs) of vector mesons produced on spinless targets are obtained. It is shown that single-valued formulas for helicity-amplitude ratios can be obtained only if the beam is longitudinally polarized.
- Making use of the amplitude ratios instead of SDMEs as free fit parameters in maximum likelihood method reduces the number of free real parameters from 23 to 8 .
- A comparison between SDMEs directly extracted from the experimental data and calculated from the helicity-amplitude ratios permits to estimate systematic uncertainties of description with Monte Carlo codes of the applied detector properties.
- Exact formula for virtual-photon longitudinal-to-transverse differential-cross-section ratio, R in terms of SDMEs for vector-meson production on spinless targets is established. There is no need in Rosenbluth decomposition.
- A new approximate formula for virtual-photon longitudinal-to-transverse differential-cross-section ratio, R in terms of SDMEs for vector-meson production on nucleons is proposed. It is more precise than R_{04} for high energies.

Back-up Slides. Spin-density Matrix of Virtual Photon

- General Formula for Spin-density Matrix of Virtual Photon

$$
\varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}=\varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}^{U}+P_{b} \varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}^{L}
$$

- Spin-density Matrix of Virtual Photon for Unpolarized Beam

$$
\begin{gathered}
\varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}^{U}(\epsilon, \Phi)= \\
=\frac{1}{2}\left(\begin{array}{ccc}
1 & \sqrt{\epsilon(1+\epsilon)} e^{-i \Phi} & -\epsilon e^{-2 i \Phi} \\
\sqrt{\epsilon(1+\epsilon)} e^{i \Phi} & 2 \epsilon & -\sqrt{\epsilon(1+\epsilon)} e^{-i \Phi} \\
-\epsilon e^{2 i \Phi} & -\sqrt{\epsilon(1+\epsilon)} e^{i \Phi} & 1
\end{array}\right),
\end{gathered}
$$

- Additive Term to Spin-density Matrix of Virtual Photon due to Longitudinal Polarization of Beam

$$
\begin{gathered}
\varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}^{L}(\epsilon, \Phi)= \\
=\frac{\sqrt{1-\epsilon}}{2}\left(\begin{array}{ccc}
\sqrt{1+\epsilon} & \sqrt{\epsilon} e^{-i \Phi} & 0 \\
\sqrt{\epsilon} e^{i \Phi} & 0 & \sqrt{\epsilon} e^{-i \Phi} \\
0 & \sqrt{\epsilon} e^{i \Phi} & -\sqrt{1+\epsilon}
\end{array}\right) .
\end{gathered}
$$

