# Наблюдение эффекта "квантовой запутанности" при анализе спиновых корреляций в парном рождении топ и анти-топ кварков в эксперименте АТЛАС.

Нарышкин Ю.Г.

Семинар ОФВЭ ПИЯФ, 17.10.2023

#### План семинара

- Введение
- Квантовая запутанность в двухчастичной системе
- Критерии сепарабельности
- Топ кварк, его свойства и квантовая запутанность
- Спиновая матрица плотности и спиновые корреляции
- Анализ данных
- Результат

#### Квантовая запутанность

- Запутанными состояниями (англ. "entangled states") называются такие состояния, в которых определенные характеристики/наблюдаемые входящих в них микросистем связаны ("запутаны"или "сцеплены") между собой при помощи какого-либо закона сохранения, т.е. состояние одного объекта нельзя описать независимо от другого.
- Такая взаимозависимость сохраняется, даже если эти объекты разнесены в пространстве за пределы любых известных взаимодействий. Измерение параметра одной частицы сопровождается мгновенным прекращением запутанного состояния другой, что может находиться в логическом противоречии с принципом локальности, который говорит о том, что на объект влияет только его непосредственное окружение, но при этом информация не передаётся и теория относительности не нарушается.
- Квантовая запутанность является неотъемлемым свойством квантовой механики.
- Исследования квантовой запутанности проводились в различных экспериментах, с использованием фотонов, атомов, мезонов, нейтрино, но она никогда не изучалась для пары кварков !!!
- В 2022 году Ален Аспект, Джон Клаузер и Антон Цайлингер получили нобелевскую премию за эксперименты с запутанными фотонами, установление нарушения неравенств Белла и исследования в области квантовой информатики.

#### Квантовые системы

В квантовой механике различают два типа квантовых состояний: чистые и смешанные

• Чистое состояние – это полностью известное квантовое состояние, если объект находится в чистом состоянии, значит про него вся информация. Чистые состояния полностью описываются волновыми функциями  $|\psi_i\rangle$  Если система находится в состояниях  $\Phi_n$  с вероятностями  $p_n$ , то систему можно описать с помощью матрицы плотности:

$$\rho = \sum_{n} p_{n} |\Phi_{n}\rangle \langle \Phi_{n}|$$

- Для чистого состояния  $\rho^2 = \rho$ , а для смешанного  $\rho^2 < \rho$ .
- Системы, состоящие из нескольких подсистем так же описываются матрицей плотности.
- Одним из требований к матрице плотности является то, что она должна быть положительно определенной, т.е. ее собственные значения не отрицательны (и в сумму равны 1, поэтому имеют смысл вероятностей).
- Диагональные элементы матрицы плотности можно интерпретировать как вероятности системы находится в определенном состоянии.
- Если сложная система может быть образована из **независимых** подсистем, то она является **не запутанной**, если ее можно представить в виде:  $\rho^{AB} = \sum_i p_i \rho_i^A \otimes \rho_i^B$ , если нельзя т.е. матрица плотности объединенной системы не может быть получена, как сумма прямых произведений матриц  $\rho_i^A$  и  $\rho_i^B$ :  $\rho^{AB} \neq \sum_i p_i \rho_i^A \otimes \rho_i^B$ , и полную систему нельзя образовать простым соединением невзаимодействующих физических подсистем то такая система является **запутанной**.

#### Критерии сепарабельности

#### Критерий Шмидта

Если квантовая система состоит из двух подсистем (два ортонормированных наборов векторов состояния  $|\phi_i\rangle$  и  $|\psi_j\rangle$  описывают две части системы) , то ее можно представить в виде разложения Шмидта:

$$|\Phi\rangle = \sum_{i,j} c_{i,j} |\phi_i\rangle |\psi_j\rangle$$
  $\Rightarrow$   $|\Phi\rangle = \sum_i^k \lambda_i |i_{\Phi}\rangle |i_{\Psi}\rangle$  (ρ =  $\sum p_i |i\rangle\langle i|$ , ρ =  $\sum p_j |j\rangle\langle j|$  - матрицы плотности подсистем)

Где  $\lambda_i$  - неотрицательные числа (коэффициенты Шмидта), удовлетворяющие условию  $\sum_i \lambda_i^2$ =1, а наборы базисных состояний  $i_{\mathbb{Q}}$  ,  $i_{\mathbb{Q}}$  образуют ортонормированную систему.

Число **ненулевых** значений коэффициентов Шмидта  $\lambda_i$  называется числом Шмидта k для вектора состояния  $|\Phi\rangle$  Чистое двухчастичное состояние считается запутанным тогда, когда число Шмидта k>1.

#### Критерий Переса-Городецкого

Переса – Городецкого является необходимым условием для объединенной матрицы плотности двух квантовомеханических систем.

$$\rho^{AB} = \sum_{i} p_{i} \, \rho_{i}^{A} \otimes \rho_{i}^{B} \qquad \Rightarrow \qquad \rho^{T_{2}} = \sum_{n} p_{n} \rho_{n}^{a} \otimes \left(\rho_{n}^{b}\right)^{T}$$

#### Примеры запутанных состояний

- Примером запутанного состояния является система двух частиц со спином ½ (кубиты)
- В системе с двумя частицами со спином 1/2, измеренными по заданной оси, каждая частица может быть либо со спином вверх, либо со спином вниз, поэтому всего система имеет четыре базовых состояния::  $\uparrow\uparrow,\uparrow\downarrow,\downarrow\uparrow,\downarrow\downarrow$

$$egin{array}{lll} |1,1
angle &=\uparrow\uparrow \ |1,0
angle &=rac{1}{\sqrt{2}}(\uparrow\downarrow+\downarrow\uparrow) \ |1,-1
angle &=\downarrow\downarrow \end{array} 
ight\} \hspace{0.5cm} s=1 \hspace{0.5cm} ext{(triplet)}$$

Триплет (полный угловой момент = 1)  $|1,1
angle = \uparrow\uparrow$   $|1,0
angle = \frac{1}{\sqrt{2}}(\uparrow\downarrow + \downarrow\uparrow)$  s=1 (triplet) s=1 (triplet) |1,1
angle = 1 (состояния не запутаны


$$|0,0
angle = rac{1}{\sqrt{2}}(\uparrow \downarrow - \downarrow \uparrow) \; iggr\} \quad s = 0 \quad ext{(singlet)}$$

Синглет (полный угловой момент = 0)

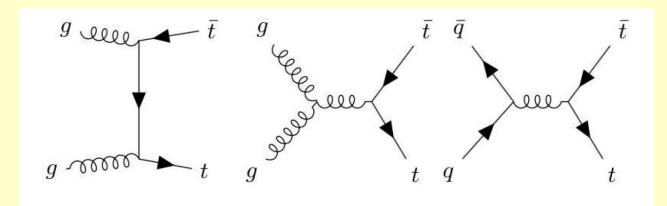
 $|0,0\rangle$  спины антипараллельны (анти коррелируют)  $\rightarrow$ состояния запутаны

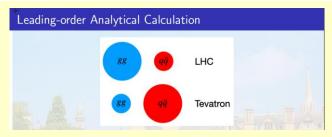
#### ТОП кварк в СМ: основные свойства

- Открыт в экспериментах CDF/D0 на Тэватроне в 1995 при исследовании рождения пар tt
- ▶ Рождение одиночного топ-кварка открыто в 2009 в экспериментах CDF/D0 и и подтверждено в экспериментах 2011 ATLAS/CMS на БАК.
- ho Топ кварк является самой тяжелой из всех открытых частиц:  $\mathbf{m}_{\scriptscriptstyle 
  m T} = \mathbf{173.0} \pm \mathbf{0.4}$  ГэВ
- ightharpoonup Имеет малое время жизни:  $au_{t} = 5 imes 10^{-25} \mathrm{s}$
- В pp-взаимодействиях топ кварк рождается, в основном парами (tt) в сильном взаимодействии или одиночно, за счет слабого взаимодействия.

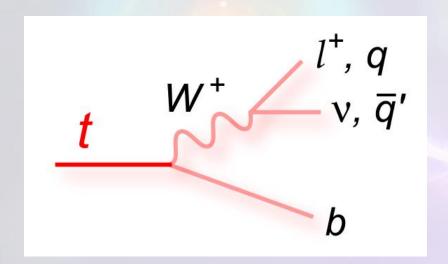


#### Механизмы рождения топ кварка


Доминирующим механизмом рождения рождения  $\,tar{t}\,$  на БАК является gg синтез.


Полученная пара tar t является запутанной только в двух областях фазового пространства:

- 1) на пороге, где пара tar t рождается в спин-синглетном состоянии и
- 2) при высоких  $p_T$ , где  $t\bar{t}$  пара рождается в спин-триплетном состоянии.


Область 1) является наиболее многообещающим кандидатом на обнаружение, поскольку сечения образования  $t\bar{t}$  больше.

$$\begin{split} q + \bar{q} &\to t + \bar{t}, \\ g + g &\to t + \bar{t}. \end{split}$$

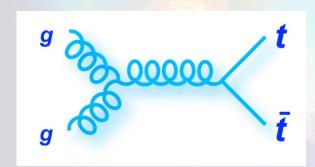




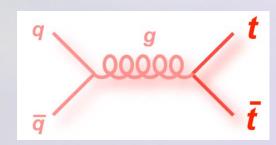
#### Распад t-кварка



- С вероятностью 99,9% t-кварк распадается в канале  $t \to Wb$
- Вследствие малого времени жизни *t*-кварк распадается до адронизации
- Продукты распада *t*-кварка сохраняют информацию о его спине


- Возможные конечные состояния будут определяться каналом распада *W*-бозона (лептонным или адронным)
- При распаде W-бозона в лептонном ( $\approx 33\%$ ) канале детектором регистрируется заряженный лептон и недостающая поперечная энергия ( $E_T^{miss}$ )
- При распаде W-бозона в адронном ( $\approx 67\%$ ) канале детектором регистрируются 2 струи
- Помимо этого детектором будет регистрироваться *b*-струя

## Почему интересно исследовать квантовую запутанность с помощью спиновых корреляций топ кварков


- так как время жизни мало, то топ распадается до процесса адронизации  $5\times10^{-23} {
  m s}$  и декорреляции спинов  $10^{-21} {
  m s}$  , т.о. передает информацию о спине продуктам распада  $\Rightarrow$  направление вылета лептонов коррелирует с направлением спина топ кварка
- Канал распада на лептон + струи имеет высокую анализирующую способность.
- При пороговом рождении пара топ-антитоп кварков рождается в синглетном состоянии (arXiv: 0812.0919), которое является "максимально запутанным".

$$\rho^{gg}(2m_t, \hat{k}) = |\Psi_0\rangle \langle \Psi_0|, \ |\Psi_0\rangle = \frac{|\uparrow \hat{n} \downarrow \hat{n}\rangle - |\downarrow \hat{n} \uparrow \hat{n}\rangle}{\sqrt{2}}$$

### Матрица плотности tar t



$$g(p_1)+g(p_2) \rightarrow t(k_1, s_1)+\bar{t}(k_2, s_2)$$



$$q(p_1) + \overline{q}(p_2) \rightarrow t(k_1, s_1) + \overline{t}(k_2, s_2)$$

Матрица плотности для этих процессов может быть записана в виде:

$$R_{\alpha_1\alpha_2,\beta_1\beta_2}^{pr} = \overline{\Sigma}\langle t(k_1,\alpha_2), \overline{t}(k_2,\beta_2)|T|a(p_1),b(p_2)\rangle^* \times \langle t(k_1,\alpha_1), \overline{t}(k_2,\beta_1)|T|a(p_1),b(p_2)\rangle$$

 $pr \equiv a, b = gg, \, q\bar{q}$  - механизмы рождения  $t\bar{t}$ -пар  $t(k_1,\alpha_2)$  ,  $\bar{t}(k_2,\beta_2)$  - волновые функции топ, анти-топ кварков

 $\alpha$ ,  $\beta$  - helicity топ и анти-топ кварков.

Усреднение проводится по всем спиновым и цветовым состояниям начальных глюонов (кварков).

Bernreuther, Heisler, Si, JHEP 1512, 026 (2015)

## Матрица плотности tar t

$$\begin{split} R^{pr}_{\alpha_1\alpha_2,\beta_1\beta_2,} &= \overline{\Sigma}\langle t(k_1,\alpha_2), \overline{t}(k_2,\beta_2)|T|a(p_1),b(p_2)\rangle^* \\ &\times \langle t(k_1,\alpha_1), \overline{t}(k_2,\beta_1)|T|a(p_1),b(p_2)\rangle \end{split}$$

Матрицу  $R_I$  можно записать в виде:

$$R_{pr} = f_{pr} \left[ \mathbf{A}^{pr} \mathbf{I} \otimes \mathbf{I} + \widetilde{\mathbf{B}}_{i}^{pr+} \sigma^{i} \otimes \mathbf{I} + \widetilde{\mathbf{B}}_{i}^{pr-} \mathbf{I} \otimes \sigma^{i} + \widetilde{\mathbf{C}}_{ij}^{pr} \sigma^{i} \otimes \sigma^{j} \right]$$

$$f_{gg} = \frac{(4\pi\alpha_s)^2}{N_c(N_c^2 - 1)}$$
  $f_{q\bar{q}} = \frac{(N_c^2 - 1)(4\pi\alpha_s)^2}{N_c^2}$ 

$$|M|^2 \propto A + B^+ \cdot s_1 + B^- \cdot s_2 + C_{ij} s_{1i} s_{2j}$$

где:  $\sigma^i$  - матрицы Паули  $N_c$  -число цветных состояний I — единичные матрицы A — неполяризованное сеченние  $\tilde{B}_i^{I\pm}$ ,  $\tilde{C}_{ij}^{I}$  - поляризация и коэффициенты корреляции

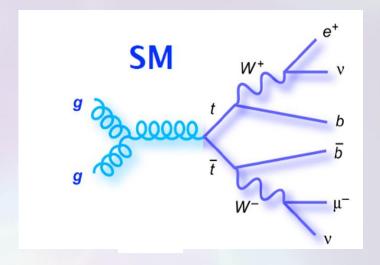
 $B_a$  ,  $B_b$ - поляризация (a,b = k,r,n) C(a,b)- коэффициенты корреляции (+) (-) обозначения для топ анти-топ кварков

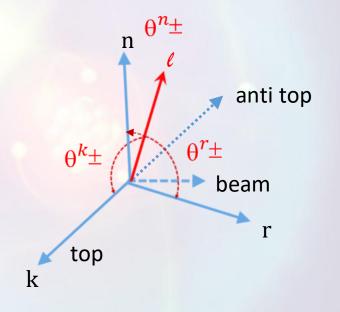
Bernreuther, Heisler, Si, JHEP 1512, 026 (2015)

Yu. Naryshkin 12

## Сечение рождения $tar{t}$

$$|M|^2 \propto A + B^+ \cdot s_1 + B^- \cdot s_2 + C_{ij} s_{1i} s_{2j}$$


$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_a^+ d \cos \theta_b^-} = \frac{1}{4} \left( 1 + B_a^+ \cos \theta_a^+ + B_b^- \cos \theta_b^- - C(a, b) \cos \theta_a^+ \cos \theta_b^- \right)$$


 $B_a$  ,  $B_b$ - поляризация (a,b = k,r,n) C(a,b)- коэффициенты корреляции (+) (-) обозначения для топ анти-топ кварков

 $\theta_a \; \theta_b$  - углы между импульсом лептона от распада W-бозона и импульсом топ кварка в системе покоя топ кварка

$$B_a = 3\langle \cos\theta_a \rangle$$

$$C(a,b) = -9\langle \cos\theta_a^+ \cos\theta_b^- \rangle$$





#### Коэффициенты корреляции

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_{+} d\Omega_{-}} = \frac{1 + \mathbf{B}^{+} \cdot \hat{\mathbf{q}}_{+} - \mathbf{B}^{-} \cdot \hat{\mathbf{q}}_{-} - \hat{\mathbf{q}}_{+} \cdot \mathbf{C} \cdot \hat{\mathbf{q}}_{-}}{(4\pi)^{2}}$$

Дифференциальное сечение для двух-лептонного распада

 $\widehat{q}_{\pm}$  направление лептона в системе покоя родительского топ кварка  $\Omega_{\pm}$  - углы вылета лептонов  $B^{\pm}$ , С — поляризации и коэфф. корреляции топ и анти-топ кварков

Коэффициенты корреляции и поляризации можно получить измеряя угловые распределения продуктов распада. Этот процесс называется "квантовой томографией".

$$\frac{1}{\sigma_{\ell\bar{\ell}}}\frac{\mathrm{d}\sigma_{\ell\bar{\ell}}}{\mathrm{d}\cos\theta_{\pm}^{i}} = \frac{1}{2}(1\pm B_{i}^{\pm}\cos\theta_{\pm}^{i})$$

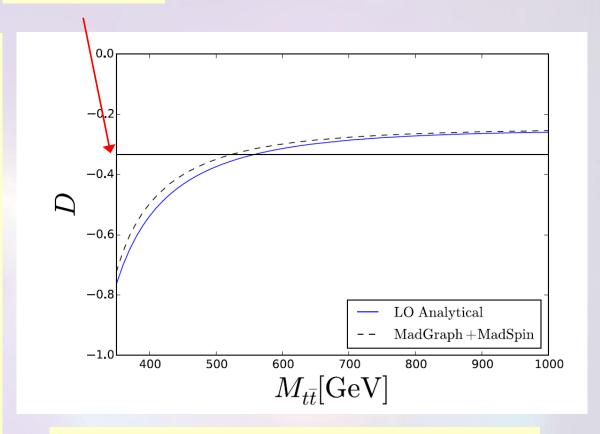
$$\frac{1}{\sigma_{\ell\bar{\ell}}} \frac{\mathrm{d}\sigma_{\ell\bar{\ell}}}{\mathrm{d}x_{ij}} = \frac{1}{2} \left[ 1 - C_{ij} x_{ij} \right] \ln \frac{1}{|x_{ij}|}$$

$$\frac{1}{\sigma_{\ell\bar{\ell}}} \frac{\mathrm{d}\sigma_{\ell\bar{\ell}}}{\mathrm{d}\cos\varphi} = \frac{1}{2} (1 - D\cos\varphi), \ D = \frac{\mathrm{tr}[\mathbf{C}]}{3}$$

Компоненты поляризации  $B_i^\pm$  вычисляются с помощью распределений по косинусам углов между направлением импульса лептона от распада и осями базиса:  $\cos\theta_+^i$ 

Коэффициенты корреляции  $C_{i,j}$  вычисляются через произведение:  $x_{i,j} = cos_+^i cos_-^j$ 

Коэффициент корреляции D, (след матрицы спиновых корреляций) может быть получен с помощью измерения дифференциального сечения в зависимости от угла между направлениями лептонов в системе покоя соответствующего топ (анти-топ) кварка):  $\cos \varphi = \hat{l}_+ \hat{l}_-$ 


#### Экспериментальное исследование

Entanglement limit

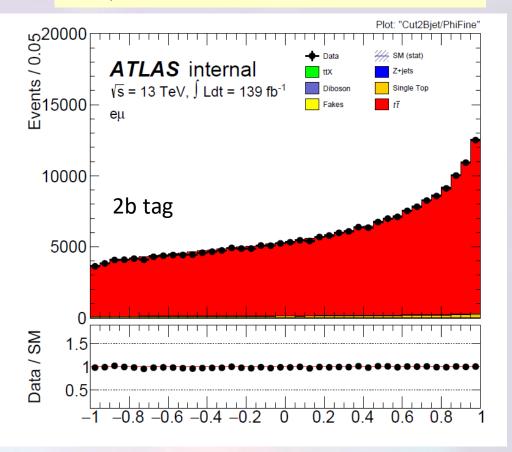
 Эффект квантовой запутанности можно исследовать путем измерения дифференциального нормированного сечения как функции cos(φ), где φ угол между двумя лептонами в их соответствующей родительской системе покоя топ-кварка.

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos(\phi)} = \frac{1}{2} (1 - D\cos(\phi))$$

- Согласно критерию Переса-Городецкого при выполнении условия D < -1/3, кварки находятся в "запутанном" состоянии.
- Этот эффект наблюдается, когда пара топ-анти-топ рождается вблизи порога (gg-fusion).



Y. Afik and J. R. M. De Nova, EPJPlus (2021).

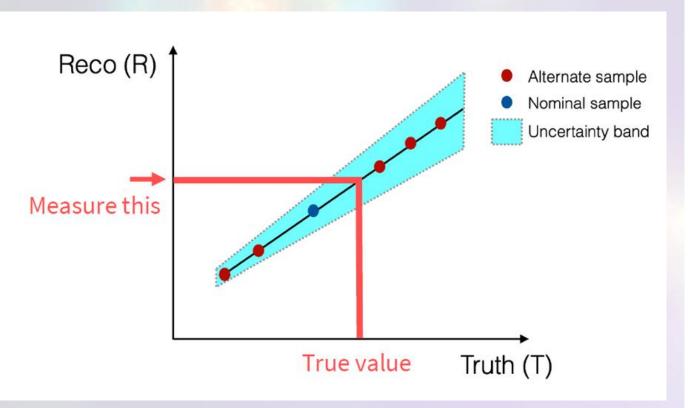

#### Event selection & background

- Exactly two opposite sign charge leptons (e or  $\mu$ ).
- At least one trigger-matched lepton.
- At least two jets.
- At least one b-tagged jet.
- Veto cut on dilepton inv mass

#### Main backgrounds:

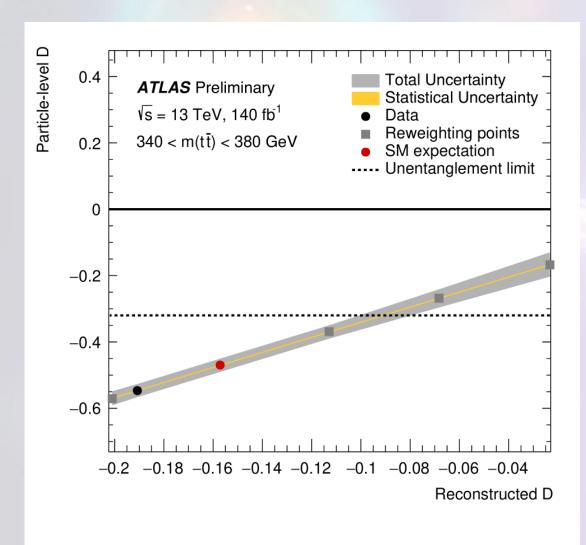
- Z+jets
- Single top
- ttX
- Dibosons
- Fakes

#### cos(φ) distribution after the full selection




Background contribution is very small !!!

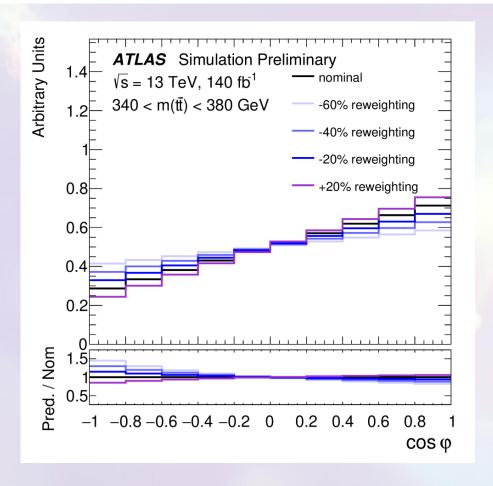
#### Учет аксептанса детектора


- Прохождение частиц через детектор, реконструкция треков и отбор событий искажают форму распределения cos(φ).
- Данные корректируются с учетом эффектов детектора до контрольного уровня частиц с использованием калибровочной кривой как в области сигнала, так и в контрольных областях, после вычета ожидаемого фона.
- калибровочная кривая связывает любое значение на уровне реконструированных треков с соответствующим значением на уровне частиц.
- Для этой цели различные значения D получают путем повторного взвешивания событий в соответствии с относительным изменением D.

#### Метод калибровочной кривой



- Устанавливает связь между наблюдаемыми данными и значением на уровне частиц (до реконструкции но после адронизации).
- Измеряется значение D по данным (наблюдаемое D)
- Сопоставляется соответствующее значение уровня частиц (скорректированное D)
- Значимость это разница между результатом и нулевой гипотезой.
- Данные корректируются с учетом эффектов детектора до уровня частиц с использованием калибровочной кривой как в области сигнала, так и в валидационных (контрольных) областях, после вычета ожидаемого фона.


#### Калибровочная кривая



- Калибровочная кривая строится по парам Reco-Truth в 5 различных точках (гипотезах) и линейно интерполируется между ними.
- Гипотезы соответствует SM и 4 различным перевзвешенным точкам (+20%, -20%, -40%, -60%).
- Наблюдаемые данные корректируются с использованием этой кривой для перехода от наблюдаемого Reco к скорректированному значению truth.
- Желтая полоса представляет статистическую ошибку, а серая полоса представляет общую ошибку, обусловленную статистической и систематической неопределенностью.
- Полная ошибка получается путем квадратичного сложения статистической и всех систематических неопределенностей.
- Измеренные и ожидаемые значения отмечены черными и красными кружками соответственно
- Предел для квантовой запутанности (пунктирная линия) представляет собой преобразование значения D = -1/3 на партонном уровне в соответствующее значение на уровне частиц.

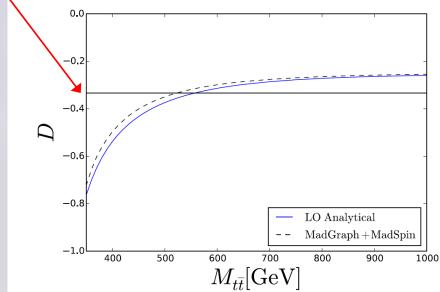
#### Перевзвеска

Чтобы проверить альтернативные гипотезы, мы должны изменить D. Альтернативный подход: каждое событие перевзвешивается (на партонном уровне). Для каждого интервала  $m(t\bar{t})$  при этом сохраняется линейность по  $\cos(\phi)$ .



#### Исследуемые кинематические области

- В анализе использовалось одна сигнальная область и две проверочные области (validation region)
- Сигнальная область создается для выбора событий, в которых пара топ кварков образуются близко к порогу, поскольку именно здесь ожидается, что пары топ-антитоп будут в запутанном состоянии.
- Оптимальное окно для области сигнала было определено как  $340 < mt \ t^- < 380$  ГэВ. Эта область определялась путем изменения верхней границы области с шагом 5 ГэВ и оценки статистической и доминирующей систематической неопределенностей.


Entanglement limit

Три кинематические области по переменной  $m(t\bar{t})$  были проанализированы:

**SR**: 340<  $m(t\bar{t})$  < 380 ГэВ (высокая степень квантовой запутанности)

**VR1**: 380<  $m(t\bar{t})$  < 500 ГэВ (степень квантовой запутанности меньше)

**VR2**:  $m(t\bar{t}) > 500$  ГэВ (нет квантовой запутанности)



$$D = \frac{\operatorname{tr}[C]}{3} < -\frac{1}{3}$$

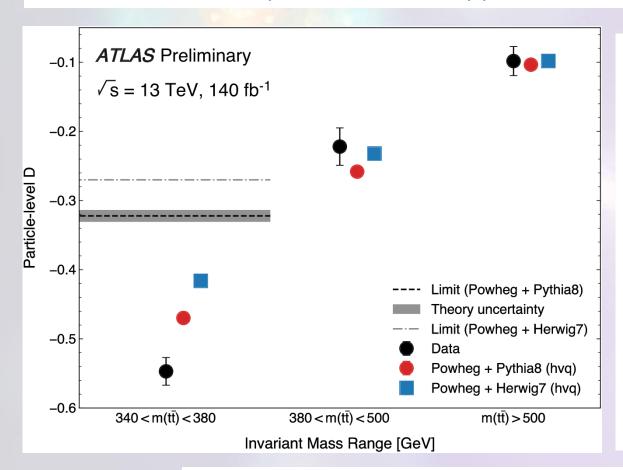
Это следствие критерия Переса-Городецкого

Y. Afik and J. R. M. De Nova, EPJPlus (2021).

## Data/MC comparison

| Process       | Inclusive           | 340 – 380 GeV     | 380 – 500 GeV      | > 500 GeV          |
|---------------|---------------------|-------------------|--------------------|--------------------|
| $tar{t}$      | $1030000 \pm 40000$ | $202000 \pm 8000$ | $408000 \pm 16000$ | $417000 \pm 17000$ |
| tW            | $59800 \pm 1100$    | $10330 \pm 200$   | $23800 \pm 500$    | $25700 \pm 500$    |
| Z+jets        | $38000 \pm 4000$    | $9300 \pm 400$    | $19000 \pm 4000$   | $9730 \pm 270$     |
| WW/WZ/ZZ      | $9140 \pm 340$      | $1320 \pm 50$     | $3280 \pm 120$     | $4540 \pm 170$     |
| $t \bar{t} X$ | $2959 \pm 6$        | $437.7 \pm 2.1$   | $1080.1 \pm 3.4$   | $1441 \pm 4$       |
| fakes         | $17700 \pm 8900$    | $3600 \pm 1900$   | $7100 \pm 3800$    | $7000 \pm 3700$    |
| Expectation   | $1150000 \pm 40000$ | $227000 \pm 8000$ | 462000 ± 17000     | 466000 ± 17000     |
| Data          | 1105403             | 225056            | 441196             | 439151             |
| data/MC       | $0.96 \pm 0.03$     | $0.99 \pm 0.04$   | $0.95 \pm 0.04$    | $0.94 \pm 0.04$    |
|               |                     |                   |                    |                    |

Хорошее согласие данных с предсказаниями СМ


#### Systematic uncertainties

Systematic uncertainties include three categories: modelling uncertainties on the  $t^-t$  production and decay, modelling uncertainties on the backgrounds, and detector-related uncertainties for both the  $t^-t$  signal and the SM backgrounds. Each source of systematic uncertainty can result in a different calibration curve, as it changes the shape of  $\cos \varphi$  either at particle level and f or at detector level.

| Systematic source                | $\Delta D_{\text{observed}}(D = -0.547)$ | $\Delta D~(\%)$ | $\Delta D_{\text{expected}}(D = -0.470)$ | $\Delta D$ (%) |
|----------------------------------|------------------------------------------|-----------------|------------------------------------------|----------------|
| Signal Modelling                 | 0.017                                    | 3.2             | 0.015                                    | 3.2            |
| Electrons                        | 0.002                                    | 0.4             | 0.002                                    | 0.4            |
| Muons                            | 0.001                                    | 0.1             | 0.001                                    | 0.1            |
| Jets                             | 0.004                                    | 0.7             | 0.004                                    | 0.8            |
| b-tagging                        | 0.002                                    | 0.4             | 0.002                                    | 0.4            |
| Pile-up                          | < 0.001                                  | < 0.1           | < 0.001                                  | < 0.1          |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ | 0.002                                    | 0.3             | 0.002                                    | 0.4            |
| Backgrounds                      | 0.010                                    | 1.8             | 0.009                                    | 1.8            |
| Total Statistical Uncertainty    | 0.002                                    | 0.3             | 0.002                                    | 0.4            |
| Total Systematic Uncertainty     | 0.021                                    | 3.8             | 0.018                                    | 3.9            |
| Total Uncertainty                | 0.021                                    | 3.8             | 0.018                                    | 3.9            |

#### Result

#### Анализ был сделан на particle level $\rightarrow$ коэффициент D не важен, важно его отклонение от entanglement limit



- Предел D = -1/3 переносится с уровня партонов на уровень частиц (с учетом эффекты партонных ливней) с использованием генераторов: Powheg + Pythia 8 и, альтернативно, Powheg + Herwig 7 которые дают пределы: -0.322 ± 0.009 (ошибка моделирование) and -0.27, соответственно.
- В проверочных областях данные совпадают с результатами моделирования, проведенными разными генераторами —> нет явного предпочтения конкретного МС генератора.
- Эффект наблюдается со значимостью более  $5\sigma$ . Наблюдаемое: D =  $-0.547 \pm 0.002$  [стат.]  $\pm 0.021$  [систем.] Ожидаемое: D =  $-0.470 \pm 0.002$  [стат.]  $\pm 0.017$  [систем.]
- Отклонение от предсказаний СМ ~ 3σ

```
VR1: D = -0.222 \pm0.001 [stat.] \pm 0.027 [syst.] (-0.258 \pm 0.001 [stat.] \pm 0.026 [syst.]) 
VR2: D = -0.098 \pm 0.001 [stat.] \pm 0.029 [syst.] (-0.103 \pm 0.001 [stat.] \pm 0.021 [syst.])
```

#### Pythia vs Herwig PS

Большое расхождение между генераторами Монте-Карло связано с разными алгоритмами, используемыми в Pythia и Herwig для упорядочивания партонного ливня.

Номинальный образец MC создается с помощью NLO ME, реализованного в PowhegBox (hvq) затем передается в Pythia 8.230, либо в Herwig 7.21 для моделирования партонных ливней, адронизации и сопутствующих событий.

На партонном уровне распределения по  $\cos(\phi)$  очень близки, а на уровне частиц сильно отличаются.

Два основных различия между Pythia и Herwig: модель адронизации и упорядочение ливней.

**Pythia** основана на модели струн Лунда и использует ливень с рТ-упорядочением. **Herwig** основан на кластерной модели и по умолчанию использует ливень с угловым упорядочением .

Сравнение моделирования с различными моделями адронизации показало, что они оказывают незначительное влияние как инклюзивно, так и в сигнальной области анализа, с  $340 < m(t\,\bar{t}) < 380$  ГэВ.

Нет однозначного заключения для выбора МС генератора.

#### **CMS**

#### Recent Related Measurement

- Recently, D was measured with no selection on  $M_{t\bar{t}}$  by the CMS collaboration.
- Results:  $D = -0.237 \pm 0.011 > -1/3$ ;  $\Delta D/D = 4.6\%$ .
- No evidence of quantum entanglement.
  - ⇒ We need a dedicated analysis!

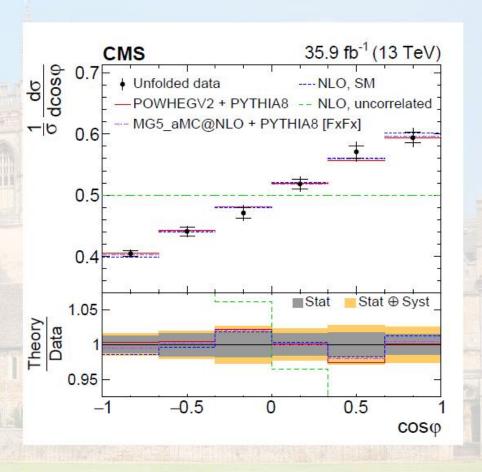
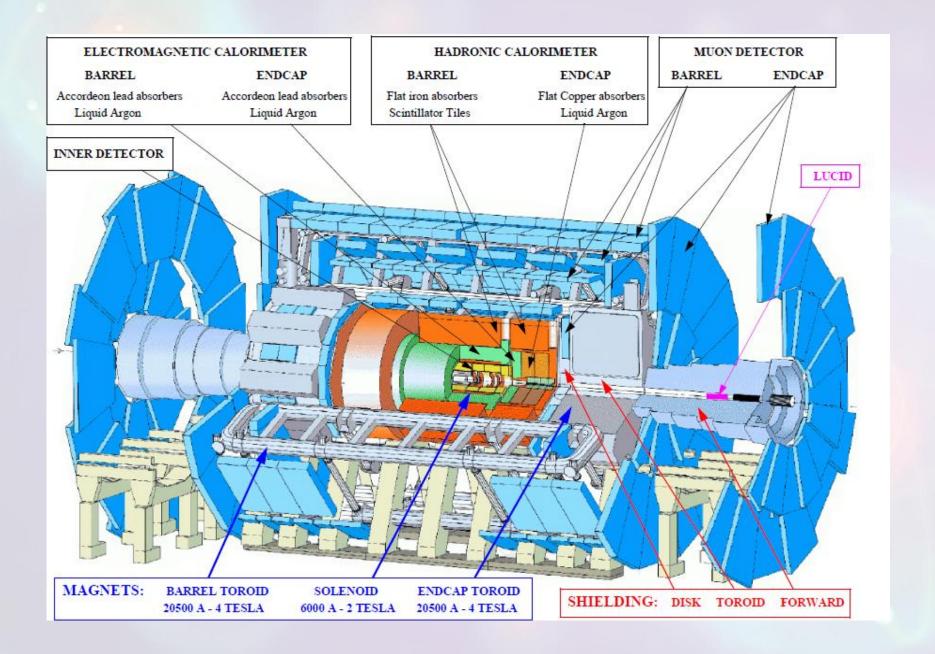



Figure: Distribution of  $\cos \varphi$ . Figure is from Phys. Rev. D 100, 072002.

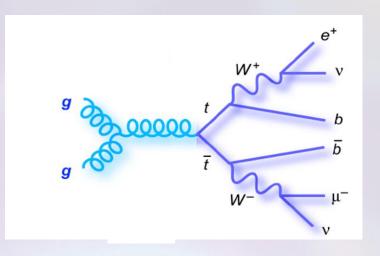
#### Заключение

- Впервые наблюдался эффект квантовой запутанности для системы состоящей из двух кварков (ТОП кварков)
- Эффект наблюдается на уровне более чем пять стандартных отклонений!
- Это первое когда-либо сделанное измерение квантовой запутанности между парой кварков и первое наблюдение квантовой запутанности на для высоких энергий.
- Результат опубликован в ноте: AT/AC-CONF-2023-069 и в CERN courier, в настоящий момент идет подготовка публикации для журнала.
- Исследуемая наблюдаемая чувствительна к моделированию партонного ливня → требуется дополнительная работа для проверки основных генераторов на предмет прецизионных измерений.

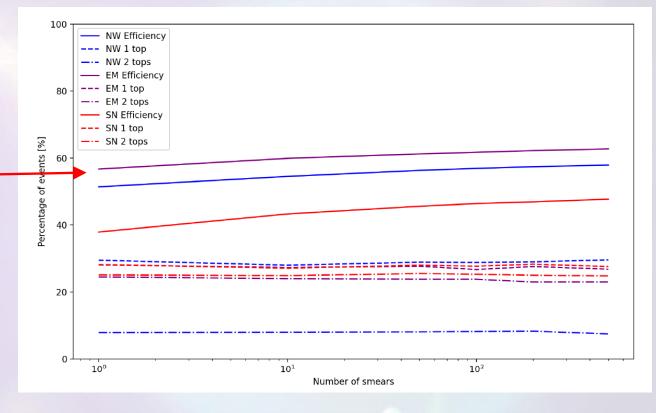

## СПАСИБО ЗА ВНИМАНИЕ!

## BACK UP

# Современный статус исследований квантовой запутанности


- Изучения квнтовой запутанности проводились в различных экспериментах, с использованием:
  - фотонов: A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).
  - atomob: E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 79, 1 (1997).
  - мезонов: A. Go et al. (Belle), Phys. Rev. Lett. 99, 131802 (2007), arXiv:quant-ph/0702267 [QUANT-PH].
  - **Нейтрино:** J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, and T. E. Weiss, Phys. Rev. Lett. 117, 050402 (2016).
  - В 2022 году Ален Аспе, Джон Френсис Клаузер и Антон Цайлингер
  - ......
  - Никогда не измерялось для пары кварков !!!

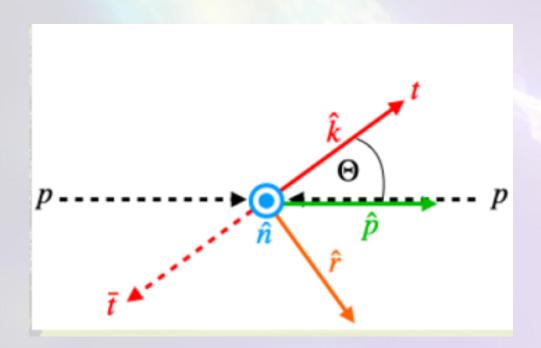
#### Детектор "АТЛАС"




#### $t\bar{t}$ kinematic reconstruction

- Dilepton channel: 6 kinematical equations and 6 unknowns which are  $\nu$  and  $\overline{\nu}$  momenta components.
- Equation can be solved analytically




- Sonenshein method is perform a sequential solution of kinematic equations to solve for the neutrino momenta.
- Ellipse method is a geometric approach to analytically solving equations of constraint on the decay of top quarks involving leptons using linear algebra techniques.
- NW method  $\eta(v)$  and  $\eta(\overline{v})$  are scanned in full  $\eta$  range to find the optimal solution.



## **Triggers**

| Year              | Trigger                                                         |  |  |  |
|-------------------|-----------------------------------------------------------------|--|--|--|
| Electron triggers |                                                                 |  |  |  |
| 2015              | e24_lhmedium_L1EM20VH, e60_lhmedium, e120_lhloose               |  |  |  |
| 2016              | e26_lhtight_nod0_ivarloose, 60_lhmedium_nod0, e140_lhloose_nod0 |  |  |  |
| 2017              | e26_lhtight_nod0_ivarloose, 60_lhmedium_nod0, e140_lhloose_nod0 |  |  |  |
| 2018              | e26_lhtight_nod0_ivarloose, 60_lhmedium_nod0, e140_lhloose_nod0 |  |  |  |
| Muon triggers     |                                                                 |  |  |  |
| 2015              | mu20_iloose_L1MU15, mu50                                        |  |  |  |
| 2016              | mu26_ivarmedium, mu50                                           |  |  |  |
| 2017              | mu26_ivarmedium, mu50                                           |  |  |  |
| 2016              | mu26_ivarmedium, mu50                                           |  |  |  |

#### Helicity basis



- Helicity basis:  $\{\hat{k}, \hat{r}, \hat{n}\}$ :
  - $\hat{k}$  direction of the top in the  $t\bar{t}$ CM frame.
  - $\hat{p}$  direction of the beam.

  - $\hat{r} = (\hat{p} \cos \Theta \hat{k}) / \sin \Theta.$   $\hat{n} = \hat{r} \times \hat{k}.$