Is the $LHCb P_{c}(4312)^{+}$ Plausible in the GlueX $\gamma p \rightarrow J/\psi p$ Total Cross Sections ?

Igor Strakovsky

The George Washington University

Joint work with Bill Briscoe Eugene Chudakov Ilya larin Lubomir Pentchev Axel Schmidt Ron Workman

- J/ψ photoproduction is sample of hard process corresponding to relatively large scale.
- Quality of novel GlueX J/ w photoproduction data & proximity of data to energy threshold, gives access to variety of interesting physics aspects.
- Examples are *trace* anomaly, estimation of J/ψ -N
- scattering length, **5**q exotics, & so on.

IIS, W.J. Briscoe, E. Chudakov, I. Larin, L. Pentchev, A. Schmidt, R.L. Workman, Phys Rev C 108, 015202 (2023) Supported by DE-SC0016583

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, October 2023

Igor Strakovsky 1

- Narrow pentaquarks from LHCb Big question.
- Glue X J/ ψ photoproduction in 2019 & 2023.
- Intermission: Quantum interference of particles & resonances.
- Alternative solution for GlueX J/ψ data.
- *Cusp* effect.
- Vector meson nucleon scattering length.
- JPAC for J/ψ photoproduction.
- SOLID for more J/ψ photoproduction.
- JLab at High Energies.
- *J-PARC* for J/ψ .
- Summary.

10/8/2023

Narrow Pentaquarks from LHCb

Narrow Pentaquarks from $\Lambda_6 \rightarrow J/\psi p K^-$

• QCD gives rise to *hadron spectrum*.

Big Question

"Not every bump is a resonance, not every resonance is a bump" R. Gordon Moorhouse (1960s)

Bump Hunting

GlueX J/W Photoproduction

in 2019 & 2023

How Bump Hunting works in 2019 Guilt data?

A. Ali et al, Phys Rev Lett 123, 072001 (2019)

Editors' Suggestion

Recent (and future) Jefferson Lab results on threshold charmonium photoproduction Lubomir Pentchev (Cuite Collaboration)

J/ψ Threshold Region Coverage

Courtesy of Lubomir Pentchev, 2023

10/8/2023

Differential Cross Sections from J/ψ by 007th $\mathcal{I} \subseteq \mathcal{I}$

10/8/2023

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, October 2023

10 energy bins in *007^{1/*}*.
Results for 3 Guilt energy bins compared to closes *007^{1/*}* energies.
Scale/Norm uncertainties:

20% in **Guy** & & 4% in **007**^{re}results.

• Good agreement within s.

Igor Strakovsky 10

How Bump Hunting works in 2023 Guilt data?

S. Adhikari et al, Phys Rev C 108, 025201 (2023

2016–2018 data: **2270±**58 $\gamma p \rightarrow \mathcal{J}/\psi p \rightarrow e^+e^-p \& 320 \text{ pb}^{-1}$

10/8/2023

Editors' Suggestion

Quantum Interference of Particles & Resonances

 IOP PUBLISHING
 JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

 J. Phys. G: Nucl. Part. Phys. 37 (2010) 023001 (22pp)
 doi:10.1088/0954-3899/37/2/023001

 TOPICAL REVIEW

Quantum interference of particles and resonances

Ya Azimov

Petersburg Nuclear Physics Institute, Gatchina 188300, Russia

Interference - I

When looking at Maxwell equations, it is hard to imagine how beautiful the **rainbow** is. Richard Feynman

Similar may be said about *Quantum Interference*.

Everybody knows that the interference does exist. But it is not always easy to imagine how it will work in a particular case.

Yakov Azimov

Interference - II

- *Quantum physics* is probabilistic.
- *Classical physics* can be probabilistic as well (Statistical physics).
- Essential difference: *Classical Physics* adds *probabilities*. *Quantum Physics* adds *amplitudes*.
- Important consequence: possibility of interference effects; various *wave functions* may mix.
- Impressive result:
 - particles may oscillate in *time*, transforming to *each other*.

Interference - III

Most Famous Examples:

• Beauty oscillations –

in decays of neutral *B*-mesons (@ *some μm*) (coherent *oscillations* of several flavors are also possible)

Ya. Azimov, Phys Rev D 42, 3705 (1990); Eur Phys J A 4, 21 (1999)

• Strangeness oscillations –

in decays of neutral *K*-mesons (@ ~ 10 cm)

• Neutrino oscillations – (up to hundreds km, or even astronomical distances ! Solar v) Wide variety of macroscopic distances!

• Quite *macroscopic* manifestations of *quantum microscopic* effects !

Interference - IV

• Same phenomenon may be *seen* in complementary variable – energy (mass in rest frame):

- It is seen here as *deformation* of **BW** peaks.
- Pure BW term: $|a|(E E_0 + i\Gamma/2)^{-1}|^2 = |a|^2 [(E E_0)^2 + \Gamma^2/4]^{-1}$
- BW with background: $|B + a (E E_0 + i \Gamma/2)^{-1}|^2$ $= |B|^2$ $+ |a|^2 [(E - E_0)^2 + \Gamma^2/4]^{-1}$ $+ [2 |B a/ \cos\phi (E - E_0) + |B a/ \sin\phi \Gamma] \times [(E - E_0)^2 + \Gamma^2/4]^{-1}$ interference term

role of interference depends on relative value & on relative phase ϕ of **B** & **a**; it is <u>linear in **a**</u>, may change sign & be either positive or negative.

- @ small value of |a/B| interference term may be more essential than proper BW contribution.
- Due to additional *E*-dependence, interference *may change sign*, provide either bump, or dip, or both.
- Bump &/or dip positions are, in general, shifted from *true position* of resonance.
- Same resonance may interfere differently in different decay modes.

Interference - V

• Rich source of examples, how interference works, is provided by reaction $e^+e^- \rightarrow hadrons$.

• Contributions with *same* final state are coherent; they all are produced through γ/Z & may directly interfere, if have *same* decay mode.

Independent contribution of resonance is BW-peak, proportional to Γ_{ce} Γ_x/ Γ_{tot}.
 Interference may change its form & intensity.

Interference - $\mathcal{V}I$

PDG $\Gamma(\rho) = 149.4 \text{ MeV}; \Gamma(\omega) = 8.5 \text{ MeV}; \Gamma(\varphi) = 4.3 \text{ MeV}$

• Bkg near φ changes slowly

nearly standard interference curve, instead of φ –peak: both bump & dip, each has form different from BW; max/min different from φ -mass ρ .

• ρ -contribution here deforms ω -tails.

• Curve is fit with ω , ϕ , ρ , ω' , & ω'' .

M. Achasov, Nucl Phys B Proc Suppl 162, 114 (2006)

 $e^+e^- \rightarrow \pi^+\pi^-$ for Interference - VII

R.R. Akhmetshin et al, Phys Lett B 648, 28 (2007)

- All above examples demonstrate direct interference of 2 resonances: all final particles can be decay products of any of the interfering resonances.
- Such kind of interference appears very efficient to search for rare decays of known resonances. may strongly deflect resonance manifestation from familiar BW peak.
- There can be other kinds of interference, where only some of final particles may come from any of 2 interfering resonances.

 Specifics of this case: rapidly decreasing bkg (ρ-peak);
 ρ-ω mixing may (& does) have complexity

Y.I. Azimov, Eur Phys J A 16, 209 (2003)

- ⇒ interference curve is strongly asymmetric: decrease, no increase.
- Opposite relative sign would reveal additional peak (case of ηγ).
- Interference is only source of information on decay $\omega \rightarrow 2\pi$.

Rescattering Interference - I

- Different resonance configurations may produce same state of 3 or more particles.
- Such contributions are coherent & may interfere.
- Contributions depend on energies & momentum transfers; may shift & move positions of bumps/dips.

- Phenomenon is known since 60s.
- It was considered as *hindrance* to resonance studies.

Rescattering Interference - II

• Name rescattering reflects similarity with rescattering in 3-particle interactions: one particle changes its interaction partner.

- On other side, this kind of interference is like the famous case of 2 *quantum slits*, since one particle refers simultaneously to 2 resonances.
- Resonances are in <u>different</u> systems & may have <u>different</u> quantum numbers but final states, after resonance decays, should contain same particles.
- 2 resonances can interfere, only if final configurations are kinematically consistent.

• This requires limited intervals of total energy & momentum transfers.

• Positions of interference bumps/dips, generally, depend on kinematic parameters & *move* with their changes (in difference with *true* resonance positions).

Rescattering Interference - III

• Direct interference of resonances has become efficient instrument actively used to study *rare decays* of known resonances.

Rescattering Interference - IV

• *Final states* with > 3 particles admit more complicated cases of rescattering interference.

• Example of 4-particle rescattering interference that may enhance small Θ^+ -contribution (suggested by Amaryan).

Intermediate Summary

- *Interference* of resonances (in energy representation) has same origin as known particle oscillations (in space-time representation).
- Small resonance contribution may be *amplified* & revealed due to its *interference* with high background (*e.g.*, another resonance).
- Manifestation of *interfering* resonance may be very different: bump, or dip, or both; may depend on decay mode. Positions of bump/dip are, in general, *shifted* from *true* position of resonance.
- Form of ``resonance'' curve essentially depends on properties of background & on Res-Bkg *relative phase*: it may be *symmetric*, or *antisymmetric*, or *strongly asymmetric*.
- *Direct interference* is actively used now as important instrument for resonance studies. Some rare decays of well - established resonances are known only due to interference manifestations.
- *Rescattering interference* of resonances may be very useful as well: to amplify small resonance signals, especially with new quantum numbers; to study production mechanisms of known resonances.

• *Interference of resonances* looks to be worth of more detailed studies, both experimental & theoretical.

Igor Strakovsky 24

Alternative Solution for

Glue X &/ W Data

Recipe for Possible Interpretation of Guine I

IIS, W.J. Briscoe, E. Chudakov, I. Larin, L. Pentchev, A. Schmidt, R.L. Workman, Phys Rev C 108, 015202 (2023) CI=2

- Experimental total Xsec of inelastic binary reaction: $\sigma_t = \int_0^{2\pi} \int_0^{\pi} \frac{d\sigma}{d\Omega} \sin\theta \ d\theta \ d\phi$
- Phenomenological total Xsec: $\sigma_t = \frac{\pi}{4k^2} \sum_{J=0} (2J+1) |f|^2$ Using Landau-Livshitz normalization

 $\theta \& \phi$ are J/ψ polar & azimuthal production angles.

k is *momentum* of photon in CM J is total angular momentum (2J+1) = 1 for S-wave = 3 for *P*-wave

a is relative *phase shift* It comes from fit of total Xsec IIS, A.V. Kravtsov, & M.G. Ryskin, Sov J Nucl Phys 40. 274 (1984

q is momentum of vector meson in IIS, L. Pentchev, & A.I. Titov, Phys Rev C 101, 045201

M & ^{*I*} are *mass* & energy independent width (**P**_c is too *narrow*)

 $\left(X\right) = \frac{\sqrt{\Gamma(\gamma+p)\ \Gamma(J/\psi+p)}}{\Gamma} = \sqrt{X(\gamma+p)\ X(J/\psi+p)}$ $\Gamma(\gamma \mathbf{p}) \& \Gamma(\mathbf{J}/\psi \mathbf{p})$ are partial decay widths of $\mathbf{P}_{c} \rightarrow \gamma \mathbf{p} \& \mathbf{P}_{c} \rightarrow \mathbf{J}/\psi \mathbf{p}.$

• Partial Amplitude: $f = b + R \cdot \exp(2i\alpha)$

There is **1** free parameter for *interference* **a**

 $b = \sqrt{A q + B q^3}$ • Non-Res: There are 2 free parameters for *background A & B*

• Partial Width:

elativistic BW:
$$R = \frac{2\Gamma M}{[(M)^2 - s] - i\Gamma M}$$

There are 3 free parameters for resonance M, Γ , & X

How Interference Works

Ya. Azimov, J Phys G **37**, 023001 (**2010**)

- *Interference* of resonances has same *quantum nature* as oscillations of particles, though they are observed in complementary variables energy (mass) for former, or time for latter.
- *Interference* contribution is linear in both b & R. Its relative role depends on R/b.

@ *small* R/b, *interference* may appear more important than BW contribution itself. This can be considered as *amplification* of small resonance signal by *interference* with large *background*.

- *Interference* contribution depends on *relative phase* α between b & **R**.
- Interference may be either positive (constructive) or negative (destructive).
- In comparison with BW contribution, *interference* may have additional *energy dependence* & may decrease with energy slower than proper BW contribution.
- *Background* itself, b & α, also may depend on energy. As a result, *background* may appear different in regions of *constructive & destructive interference*, & relative role of these regions may be very different, up to full vanishing of one of them. Thus, presence of *interference* may provide either *bump*, or *dip*, or *both*.
 Positions of *bump &/*or *dip* are, generally, *shifted* from true position of *resonance*.
- Resonances can *interfere* differently in different decay channels, @ least due to different properties of corresponding *backgrounds*.

Deciphering Mechanism of Near-Threshold J/ψ Photoproduction

Meng-Lin Du, V. Baru, Feng-Kun Guo, Ch. Hanhart, U.-G. Meissner, A. Nefediev, & IIS, Phys Rev C 106, 015202 (2022)

0.0 └ 3.9

4.1

4.3

W

4.5

(GeV)

• It was shown that *fluctuation* of *photon* into *open charm* $\gamma p \rightarrow \Lambda_c \overline{D}$. is preferable than into *Charmonium* J/ψ .K. Boreskov, A. Capella, A. Kaidalov, & J. Tran Than Van, Phys Rev D **47**, 919

• Cusp effect is visible & in agreement with Gue • $c\bar{c}$ pair is produced by lg & $\sigma(\gamma p \rightarrow J/\psi p) [nb]$ interacts with proton. cc *pair* is produced by *photon* via *VMD* & interacts with *proton* through 2g exchange. GLUE gluon exchange charm exchange 10^{-10} 8 8.5 9 9.5 10 10.5 11 • These *two mechanisms* act simultaneously. E_v [GeV] Assuming there is only *first* one, then key consequence: threshold cusps ! • There is no fit to Guilt data. 1.5 • One should study two-component problem accounting for 1.2 σ_t (nb) interference between these two components. 0.9 • Effect of *charm* exchange is smaller than gluon exchange. • *Gluon* contribution can be strongly *suppressed* due to "*young*" effect. 0.6 0.3 γp→J/ψp

10/8/2023

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, October 2023

4.9

4.7

Vector Meson - Mucleon

Scallering Length

Joint HEPD-THD Seminars (Thursdays) April 6, 2023

Vector Meson – Nucleon SL

- Due to *small size* of *"young" V* vs *"old" V*, measured & predicted *SL* is very small.
- *V* created by photon @ threshold then most probably *V* is not formed completely & its radius is smaller than that for normal ("*old*") *V*.
- Therefore, one observes stronger suppression for *Vp* interaction.

PWA for Baryons

• Originally *PWA* arose as technology to determine amplitude of reaction via fitting scattering data.

- ⇒ That is *non-trivial mathematical problem* looking for solution of ill-posed problem following to Hadamard & Tikhonov. [number of equations less than number of unknown quantities]
- \Rightarrow There are two main technologies to look for solution:
 - (i) *least-squares minimization* of functions which are linear in unknown parameters, χ^2 &
 - (ii) *likelihood measures goodness* of fit of statistical model.
 - [*Minimizing* χ^2 is equivalent to *maximizing* (log) likelihood just case *not small statistics*]
- \Rightarrow Model *independent* treatment or data *driven* treatment.
- Resonances appeared as by-product

[bound states objects with definite quantum numbers, mass, lifetime, & so on].

 ⇒ Reveals only wide Resonances, but not too wide (Γ < 500 MeV) & possessing not too small BR (BR > 4%).
 ⇒ Tends (by construction) to miss narrow Resonances with Γ < 20 MeV.

Standard PWA

$\int \int for \int \frac{1}{\psi} Photoproduction$

D. Winney et al, Phys Rev C 108, 054018 (2023)

CI=4

Jefferson Lab Hall A for more J/ψ Photoproduction

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, October 2023

Igor Strakovsky 37

J Lab al Kigh Energies

A. Accardi et al, arXiv:2306.09360 [nucl-ex]

10/8/2023

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, October 2023

Igor Strakovsky 39

10/8/2023

- Interpretations of published & Current cases considered *constructive interference* between resonance & non-resonant background for particular PW,
 In this work, we relax this requirement & consider & possibility of *destructive interference which nobody did before*.
- Here we have shown that *resonance-like* structure is "*plausible*" in new Guy data, in energy region close to low-mass the pentaquark.
- Statistics of new Guy data is not sufficient to draw definite conclusion.
- Predictions of *open charm* model reasonably agree with new Super data. *Interference* between *open charm* & *gluon exchange* may (by some accident) produce *dip* but there is room for *resonance*.

While not evident in \bigcirc data, one cannot exclude that we have all 4 \bigcirc P_c resonances together with *open charm* & *gluon exchange* (*gluon* contribution can be strongly suppressed due to "*young*" effect).

It seems that analysis of full Guile -I & Guile -II &/or Soll may help.
 It will be good to shrink significantly *uncertainties* (to increase statistics by a factor of 10+) & make much larger number of cross sections (by factor of 2+).
 Polarized measurements are important contribution for model independent PWA.

• may help to solve this puzzle. Thanks

UMMAR

