Исследование спиновых эффектов на установке СПАСЧАРМ на ускорителе У-70

В. Мочалов

НИЦ «Курчатовский институт» - ИФВЭ от имени сотрудничества СПАСЧАРМ

Сущность спина

- Изучение структуры спектров излучения и поглощения атомов привело около ста лет назад к необходимости введения самого понятия спина частиц (Von W.Gerlach and O.Stern, Z. Phys. 8 (1921) 110). Результаты этих первых исследований оказались неожиданными и помогли раскрыть парадоксальную квантовую природу спина, принимающего только целые и полуцелые значения.
- Спин **s** в квантовой механике обозначает собственный момент импульса частиц, спин не связан с перемещением в пространстве частицы, и является её внутренней характеристикой, наподобие массы или заряда. Спин, как и момент импульса, представляется аксиальным вектором.
- Спин является особой и весьма нетривиальной составляющей углового момента (момента импульса) со специфическими свойствами, и его природа всё ещё - спустя почти 100 лет после открытия – остаётся тайной.

Чем важны поляризационные исследования в сильных взаимодействиях?

• Интерес к исследованию спиновой зависимости сильного взаимодействия связан с возможностью изучения <u>динамики</u> взаимодействия и спиновой структуры адронов через взаимодействия партонов, имеющих ненулевой спин.

• Для проведения поляризационных исследований надо создавать пучки поляризованных частиц, использовать технику поляризованных мишеней. В последние годы произошел заметный прогресс в экспериментальном изучении спиновых эффектов при высоких энергиях, подавляющее большинство экспериментов было проведено в области непертурбативной КХД (при умеренных поперечных импульсах).

 Развивается теоретическое осмысление спиновых эффектов.
 Однако сегодня нет теории, претендующей на полное описание всех наблюденных поляризационных эффектов.

• Новые экспериментальные результаты в этой трудной для теоретиков области непертурбативной КХД важны для развития теоретических подходов и возможного создания теории (модели) для описания всех спиновых эффектов.

"Experiments with spin have killed more theories than any other single physical parameter"

Elliot Leader, Spin in Particle Physics, Cambridge U. Press (2001)

"Polarisation data has often been the graveyard of fashionable theories. If theorists had their way they might well ban such measurements altogether out of selfprotection."

J. D. Bjorken, Proc. Adv. Research Workshop on QCD Hadronic Processes, St. Croix, Virgin Islands (1987).

07.03.2023

• Зачем?

 мотивация и программа физических исследований в эксперименте СПАСЧАРМ

• Что и кто?

- текущий статус эксперимента, всех детекторов установки, проблемы, текущий анализ
- Причем здесь ПИЯФ?
 - Участие сотрудников ПИЯФ в эксперименте СПАСЧАРМ

• Что дальше?

• Планы исследования на ближайшее время

Что мы энали о роли спина в сильных взаимодействиях

- Спиновые эффекты в сильных взаимодействиях малы:
 - Односпиновая асимметрия мала и бадает с ростом энергии (m_q/√s)
 - Асимметрия Кадает с ростом поперечного импульса.

• Спин протона спина кварков

ТЕОРИЯ И ПРАКТИКА

	Считалось	Эксперимент
Вклад спина кварков в спин протона (наивно)	1	1/3
Вклад спина глюонов в спин протона	неизвестно	Близко к нулю при малых х
Односпиновая асимметрия адронов	< 1%	До 40% в ряде реакций
Зависимость асимметрии от энергии и поперечного импульса	падает	Практически не зависит
Отношение электрического форм-фактора к магнитному	1	Падает до нуля
Спиновые эффекты в участием антипротонов	неизвестно	Практически нет данных
СР нарушение в поляризации	неизвестно	Нет данных

СТРАТЕГИЯ ЭКСПЕРИМЕНТА СПАСЧАРМ

- Этап 1. Спиновые эффекты на канале 14 (2018-...), включая первые измерения поляризации и выстроенности
- Этап 2. Создание пучка поляризованных протонов и антипротонов (исследования с 2024 г. ?):
 - систематическое исследование инклюзивных, эксклюзивных и упругих реакций в рождении частиц, состоящих из легких кварков (u, d, s)
 - Поляризация (выстроенность) в процессах рождения гиперонов и векторных мезонов
 - Изучение зависимости от кинематических параметров (0<x_F <1, 0< p_T<3.0, 12<E_{Beam} <60 GeV), сорта частиц пучка, множественности, атомного номера с высокой точностью благодаря полному азимутальному углу и большой апертуре
 - Двухспиновая асимметрия A_{LL} в рождении чармония для изучения вклада глюнов в спин протона ΔG/G(x) при больших x_F

Что такое односпиновая асимметрия

07.03.2023

Формула вычисления односпиновой асимметрии

Односпиновая асимметрия определяется как

$$A_N^H(x_f, p_t) = \frac{1}{P_{target}} \frac{1}{\langle \cos\phi \rangle} \cdot \frac{\sigma^H_{\uparrow}(x_f, p_t) - \sigma^H_{\downarrow}(x_f, p_t)}{\sigma^H_{\uparrow}(x_f, p_t) + \sigma^H_{\downarrow}(x_f, p_t)}$$

*P*_{target} – средняя поляризация мишени;

 ϕ – азимутальный угол;

(При малых углах ϕ считается, что все вторичные частицы вылетают под азимутальным углом 0°).

Измеряемая асимметрия

$$A_N = \frac{D(x_f, p_t)}{P_{target}} \cdot A_N^{raw}(x_f, p_t) = \frac{D(x_f, p_t)}{P_{target}} \cdot \frac{n_{\uparrow}(x_f, p_t) - n_{\downarrow}(x_f, p_t)}{n_{\uparrow}(x_f, p_t) + n_{\downarrow}(x_f, p_t)}$$

D - фактор разбавления мишени (отношение числа взаимодействий на всей мишени к числу взаимодействий на водороде)

07.03.2023

Мотивация проведения исследований

Асимметрия инклюзивного образования практически не зависит от энергии

Асимметрия в области фрагментации Неполяризованной частицы вблизи границы фазового объема ненулевая

07.03.2023

Исследования вклада глюонов в спин протона

07.03.2023

Кинематика и асимметрия «СПАСЧАРМ 24»

Зависимость партонных спиновых асимметрий $gg \rightarrow \psi g$ (сплошная линия), $gg \rightarrow$ $\chi_{c1}g$ (пунктирная линия) и $gg \rightarrow \chi_{c2}g$ (точечная линия) от поперечного импульса чармония 07.03.2023

ИССЛЕДОВАНИЕ ЧАРМОНИЯ НА ЭТАПЕ 2

- Односпиновая асимметрия A_N инклюзивного рождения J/ψ и χ₁/χ₂ на пучке поляризованных протонов. Ожидаемая статистика за 40 дней набора данных:
 - Пучок поляризованных р (45 GeV, 4·10⁷ p/cycle): 10000 J/ψ и 1000 χ₁/χ₂ состояний.
 - Статистическая точность измерения асимметрии *J/Ψ*-7%
 - Измерение соотношения сечений рождения χ_1/χ_2 для определения механизма рождения чармноия на пучках протонов и пионов.
- Измерение двухспиновой асимметрии А_{LL} для изучения <u>AG/G(x)</u>.
- Измерение A_{NN} образования пар адронов и Drell-Yan(???) для изучения трансверсити h(x). Одновременно исследование A_{NN} и A_N рождения J/ψ, χ₁/χ₂.
- Двухспиновые эффекты в различных реакциях

новая физика с пучком антипротонов

• Исследование $\Delta \sigma^{\perp} \propto \left(\vec{p} \cdot \left[\vec{\zeta}_{p} \times \vec{\zeta}_{\bar{p}} \right] \right)$, здесь \vec{p} - вектор импульса протона, а $\vec{\zeta}_{p}$ и $\vec{\zeta}_{p}$ - векторы поляризации протона и антипротона. Эта асимметрия может быть наблюдена в столкновениях поперечно-поляризованных частиц с взаимно ортогональными поляризациями. При смене знака одной из поляризаций также меняет знак. Присутствие вклада $\Delta \sigma^{\perp}$ с детектированием в конечном состоянии истинно нейтральной подсистемы в аксептансе, симметричном относительно *x*_г=0, было бы однозначным свидетельством СР-нарушения. К числу таких экспериментов с истинно нейтральными по всем зарядам конечными состояниями можно отнести, в частности, измерения упругого, неупругого и полного сечения в взаимодействия или сечения инклюзивного рождения истинно нейтральных резонансов и частиц, например *π*°мезонов, в симметричном по $x_{\rm F}$ аксептансе.

Концептуальный проект

07.03.2023

Зависимость интенсивности и фонов протонного и антипротонного пучков

Использование мишени, помещенной внутри магнита позволяет увеличить интенсивность анти-протонного пучка в 3 раза

07.03.2023

«Установка 24»

07.03.2023

Преимущества СПАСЧАРМ

- Широкая физическая программа и систематические исследования явления поляризации
- Разнообразие пучков: поляризованные пучки протонов и антипротонов, неполяризованные π±, K±, p, анти-p, d, C.
- Исследование десятков реакций одновременно.
- Поперечно и продольно поляризованные и ядерные мишени.
- Множество изучаемых поляризационных величин: A_N, P_N, A_{NN}, A_{LL}, D_{NN}, ρik, ...
- Полное покрытие азимутальных углов для снижения систематических ошибок, большой кинематический диапазон
- Идентификация вторичных частиц, и заряженных, и нейтральных, например γ , $\pi 0$, $\pi \pm$, $K \pm$, p, анти-p, d.
- Использование спин-ротатора для получения поперечно- и продольно поляризованные пучки и уменьшения систематики.
- Система сбора данных, быстро собирающая большой объем информации. 07.03.2023

Текст проекта и последних статей

ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА 2023. Т. 54, вып. 1. С. 6–189

КОНЦЕПТУАЛЬНЫЙ ПРОЕКТ ЭКСПЕРИМЕНТА СПАСЧАРМ

В. В. Абрамов¹, И. Л. Ажгирей¹, А. А. Борисов¹, С. И. Букреева¹, А. Н. Васильев^{1,2}, В. И. Гаркуша¹ Ю. М. Гончаренко¹, А. М. Горин¹, А. А. Деревщиков¹, В. Н. Запольский¹, А. Н. Исаев¹, Н. К. Калугин¹, В. А. Качанов¹, А. С. Кожин¹, А. К. Лиходед¹, А.В. Лучинский¹, Е.В. Маслова¹, В.А. Маишеев¹, Ю. М. Мельник¹, А. П. Мешанин¹, Н. Г. Минаев¹ В. В. Моисеев¹, Д. А. Морозов¹, В. В. Мочалов^{1,2,*} К. Д. Новиков¹, Л. В. Ногач¹, С. В. Пославский¹ А. Ф. Прудкогляд¹, С. В. Рыжиков¹, В. И. Рыкалин¹, А. Д. Рябов¹, Т. Д. Рябова¹, А. В. Рязанцев¹, П. А. Семенов^{1,2}, В. А. Сенько¹, С. Р. Слабоспицкий¹, М. М. Солдатов¹, Л. Ф. Соловьев¹, А. В. Узунян¹, Р. М. Фахрутдинов¹, Н. А. Шаланда¹, В. И. Якимчук¹, А. Е. Якутин¹, Н. А. Бажанов³, Д. В. Белов³, Н. С. Борисов³, В. П. Вольных³, С. В. Голоскоков³, И.С.Городнов³, А.С.Должиков³, А.Б. Лазарев³, А.Б. Неганов³, Ю.А. Плис³, О.В. Теряев³, А. Н. Федоров³, Ю. Н. Узиков^{3,4}, Ю. А. Усов³, А. А. Богданов², М. Б. Нурушева², В. А. Окороков², В. Л. Рыков², М. Н. Стриханов², И. Г. Алексеев⁵, В. М. Нестеров⁵, В. В. Рыльцов⁵, Э. И. Самигуллин⁵, Д. Н. Свирида⁵, В. А. Андреев⁶, А. Б. Гриднев⁶, Н. Г. Козленко⁶, В. С. Козлов⁶, В. А. Кузнецов⁶, Д. В. Новинский⁶, В. И. Тараканов⁶, В. С. Темирбулатов⁶, И.А.Цираков⁶, В.И.Криворучко⁷ (коллаборация СПАСЧАРМ)

¹ Институт физики высоких энергий им. А. А. Логунова Национального исследовательского центра «Курчатовский институт», Протвино, Россия ² Национальный исследовательский ядерный университет «МИФИ», Москва

* E-mail: mochalov@ihep.ru

- <u>http://www1.jinr.ru/Pepan/</u> v-54-1/02_abramov.pdf
- https://doi.org/10.1016/j.ni ma.2018.05.050
- https://doi.org/10.7566/JP SCP.37.020504
- <u>https://doi.org/10.1088/17</u>
 <u>42-6596/1690/1/012084</u>

 https://doi.org/10.1088/17 42-6596/1435/1/012044

07.03.2023

Готовность «установки 24»

- Проект канала и установки на канале 24 готовы, практически полностью готовы рабочие чертежи.
- Для первого этапа детекторы установки готовы (требуется перенос)
- Для второго этапа разработаны все детекторы (для большинства есть прототипы)
- Большинство элементов есть в наличии.
- Проект магнита мишени готов, ведутся переговоры с возможными изготовителями
- Проект спин-флиппера готов
- Проект системы мечения и измерения импульса готов, изготовлен прототип

07.03.2023

Перспективы финансирования работ по 24 каналу.

- Перспективы Финансирования (4 млрд. руб. вместе с экспериментальной установкой, меньше 2 млрд, если по основной деятельности):
 - ИФВЭ сейчас реализует 4 проекта вероятность нового затруднена
 - Ведутся активные поиски других источников финансирования

Установка на канале 14

07.03.2023

Команда в сеансе на канале 14

Абрамов В.В., Васильев А.Н., Гончаренко Ю.М., Калугин Н.К., Мельник Ю.М., Мещанин А.П., Минаев Н.Г., Моисеев В.В., Морозов Д.А., Мочалов В.В., Ногач Л.В., Новиков К.Д., Прудкогляд А.Ф., Рыжиков С.В., Рязанцев А.В., Семенов П.А., Узунян А.В., Якутин А.Е. НИЦ Курчатовский Институт – ИФВЭ Бажанов Н.А., Борисов Н.С., Городнов И.С., Должиков А.С., Лазарев А.Б., Неганов А.Б., Федоров А.Н., Усов Ю.А. ОИЯИ (Дубна) Гриднев А.Б., Козленко Н.Г., Новинский Д.В., Темирбулатов В.С. НИЦ Курчатовский Институт – ПИЯФ (Гатчина) Алексеев И.Г., Нестеров В.М., Рыльцов В.В., Самигуллин Э.И., Свирида Д.Н., Скробова Н.А. НИЦ Курчатовский Институт – КК-ТЭФ (Москва) Нурушева М.Б., Рыков В.Л. НИЯУ МИФИ (Москва)

07.03.2023

Данные в эксклюзивных каналах

07.03.2023

Задачи СПАСЧАРМ на канале 14 в целом (инклюзив)

Final state	N _{EVENTS}
π^+	4.2 ·10 ⁹
π-	8.7 ·10 ⁹
$\pi^0 \rightarrow \gamma \gamma$	4.3 ·10 ⁹
$\pi^0 \rightarrow \gamma \gamma$	4.3 ·10 ⁹
$\eta \rightarrow \gamma \gamma$	4.2 ·10 ⁸
$\eta' \rightarrow \pi^+ \pi^- \eta$	8.3 ·10 ⁵
${\rm K}^0{}_S\!\!\rightarrow\pi^+\pi^-$	1.3 ·10 ⁷
$ ho^{0}(770) ightarrow \pi^{+} \pi^{-}$	4.2 ·10 ⁸
$\eta { ightarrow} \pi^+ \pi^- \pi^0$	5.3 ·10 ⁶
$\omega(782) ightarrow \pi^+ \pi^- \pi^0$	3.5 ·10 ⁷
$\omega(782) \rightarrow \gamma \ \pi^0$	3.8 ·10 ⁷
$ ho^+(770) ightarrow \pi^+ \pi^0$	2.9 ·10 ⁸
$ ho$ -(770) $ ightarrow \pi^- \pi^0$	7.5 ·10 ⁸
${\rm K}^0{}_{ m S} { ightarrow} \pi^0 \pi^0$	$1.7 \cdot 10^{7}$
$a_0(980) \rightarrow \eta \pi^0$	1.8 ·10 ⁷
$\omega(782) \rightarrow e^+ e^-$	1.7 ·10 ⁵

Final state	N _{EVENTS}
K ⁺	6.7·10 ⁸
K ⁻	9.0·10⁸
р	9.2 ·10 ⁷
p	2.6 ·10 ⁸
$\mathrm{K}^{0^*}(892) { ightarrow} \mathrm{K}^+ \pi^-$	1.1·10⁸
$ ilde{K}^{0^*}(892) \rightarrow K^- \pi^+$	4.3 ·10 ⁷
$K^{\scriptscriptstyle +*}(892){\rightarrow} K^{\scriptscriptstyle +}\pi^0$	1.9·10⁷
$ ilde{K}^{-*}(892) \rightarrow K^- \pi^0$	3.8 ·10 ⁷
$\phi(1020) {\rightarrow} \ K^+ \ K^-$	4.3 ·10 ⁶
$\Lambda \rightarrow p \pi^-$	1.4 ·10 ⁶
$\tilde{\Lambda} \rightarrow \tilde{\mathbf{p}} \; \pi^+$	1.1 ·10 ⁶
$\Delta^{++} \rightarrow \mathbf{p} \; \pi^+$	9.3 ·10 ⁶
$\Delta^{} \rightarrow \tilde{\mathbf{p}} \pi^{-}$	2.5 ·10 ⁷
$\Xi^- \rightarrow \Lambda \pi^-$	1.9·10 ⁶
$ ilde{\Xi}^+ o ilde{\Lambda} \pi^+$	1.6·10 ⁶
$\Sigma^0 \rightarrow \Lambda \gamma$	1.2·10 ⁶
$\Sigma^0(1385) \rightarrow \Lambda \pi^0$	3.9 ·10 ⁶

07.03.2023

СТАТИСТИКА С ИСПОЛЬЗОВАНИЕМ КАОННОГО И АНТИПРОТОННОГО ПУЧКА

N♀	particle	N _{EV}	B/S	Nº	particle	N _{EV}	B/S
1	п+	6.7·10 ⁸		13	ρ [–] (770)→ π [–] π ⁰	7.5·10 ⁷	3.8
2	Π-	8.9·10 ⁸		14	η'→ γγ	7.3·10 ⁵	6.0
3	K+	8.9·10 ⁷		15	φ(1020)→ K ⁺ K [−]	1.0·10 ⁷	0.05
4	K-	4.0·10 ⁸		16	К ^{0*} (892)→ К ⁺ п [−]	1.3·10 ⁷	1.2
5	р	6.8·10 ⁷		17	К̃ ^{0*} (892)→ К [–] п ⁺	6.6·10 ⁷	0.8
6	р.	3.7·10 ⁷		18	K ^{-*} (892) → K ⁻ π ⁰	3.4·10 ⁷	2.2
7	n	6.2·10 ⁷		19	Ξ [−] → Λ π [−]	2.5·10 ⁶	0.02
8	п⁰→үү	4.2·10 ⁸	0.13	20	Л → р п [−]	1.8·10 ⁶	0.02
9	η→γγ	2.5·10 ⁷	0.8	21	$\tilde{\Lambda} \rightarrow \tilde{\tilde{p}} \pi^+$	2.9·10 ⁵	0.08
10	К ⁰ s→ п+ п-	2.2·10 ⁷	0.25	22	Л → n п ⁰	4.0·10 ⁵	0.6
11	ρ⁰(770)→ π ⁺ π [−]	6.8·10 ⁷	2.7	23	Σ ⁻ → n π ⁻	3.1·10 ⁶	5.0
12	К ⁰ s→ п ⁰ п ⁰	4.2·10 ⁶	1.1				
N⁰	частица		S/B	N⁰	частица	N _{EV}	S/B
1	π+	2.1·10 ⁸		7	n	1.6·10 ⁷	
2	π-	2.6·10 ⁸		8	ñ	1.4·10 ⁸	
3	K+	1.7·10 ⁷		9	$\tilde{\Lambda} \rightarrow \tilde{p} \pi^+$	2.1·10 ⁶	10
4	K-	2.2·10 ⁷		10	$\tilde{\Lambda} \rightarrow \dot{\tilde{n}} \pi^0$	1.1·10 ⁶	0.13
5	р	1.6·10 ⁷		11	$\tilde{\Delta}^{} \rightarrow \tilde{p} \pi^{}$	4.2·10 ⁷	0.14
6	p	1.8·10 ⁸		12	$\Xi^{-} \rightarrow \Lambda \pi^{-}$	1.0·10⁵	10

07.03.2023

СТАТИСТИКА С ИСПОЛЬЗОВАНИЕМ ПРОТОННОГО ПУЧКА (50 ГЭВ)

Nº	particle	N _{EV}	B/S	N⁰	particle	N _{EV}	B/S
1	Π+	6.1·10 ⁹		17	ρ ⁺ (770)→ п ⁺ п ⁰	3.0·10 ⁸	2.5
2	п-	3.6·10 ⁹		18	ρ [–] (770)→ п [–] п ⁰	1.5·10 ⁸	3.2
3	К+	5.5·10 ⁸		19	а₀(980)→ η п ⁰	5.7·10 ⁶	0.8
4	K⁻	2.5·10 ⁸		20	η→ п+ п− п⁰	7.8·10 ⁶	0.25
5	р	4.7·10 ⁹		21	ω(782) → π ⁺ π [−] π ⁰	3.0·10 ⁷	0.7
6	p.	2.3·10 ⁶		22	K ^{+*} (892)→ K ⁺ π ⁰	3.4·10 ⁷	3.5
7	n	3.5·10 ⁹		23	Ќ ^{–*} (892)→ К [–] п ⁰	9.7·10 ⁶	1.4
8	n٠	2.5·10 ⁶		24	ω(782)→ γ π ⁰	7.8·10 ⁶	0.4
9	п⁰→үү	2.5·10 ⁹	0.11	25	Л→рп⁻	2.3·10 ⁷	0.1
10	η→γγ	1.3·10 ⁸	0.4	26	Л → n п ⁰	2.1·10 ⁷	1.5
11	φ(1020)→ K ⁺ K [−]	3.7·10 ⁶	0.04	27	Δ ++→ р п+	1.0·10 ⁹	1.7
12	Ξ ⁻ → Λ π ⁻	3.5·10 ⁷	0.02	28	Ξ [−] → Λ π [−]	3.5·10 ⁷	0.12
13	К ⁰ s→ п+ п ⁻	6.7·10 ⁷	1.1	29	$\Sigma^0 \rightarrow \Lambda \gamma$	3.5·10 ⁷	4.0
14	ρ⁰(770)→ π ⁺ π [−]	3.6·10 ⁸	2.7	30	Σº(1385)→ Λ ⊓ ⁰	9.8·10 ⁷	1.3
15	K ^{0*} (892)→ K ⁺ π [−]	5.8·10 ⁷	1.3	31	ω(782)→ e ⁺ e [−]	2.0 · 10 ⁵	0.25
16	К̃ ^{0*} (892)→ К [–] п ⁺	3.1·10 ⁷	0.8	32	ρ⁰(770)→ μ+ μ−	1.0·10 ⁵	0.25

07.03.2023

Комплексный запуск и цель экспозиции 2018

 Основная задача сеанса 2018 г - комплексный запуск пилотной версии установки, включая четыре станции дрейфовых трубок (39 плоскостей камер, 2112 каналов электроники), и первый физический набор данных (статистики) на поляризованной мишени:

Измерение односпиновой асимметрии заряженных пионов (h+, h-) и некоторых резонансов, которые распадаются на пионы (ρ →π⁺π⁻, ω → π⁺π⁻π⁰, η['](958), f₀(980), a₀(980), f₂(1270)) в области фрагментации неполяризованного пионного пучка на поляризованной протонной мишени

Моделирование K_{S}^{0} мезонов

GeV/c	0 < p _z ≤ 4.0	4.0 < p _Z ≤ 8.0	8.0 < p _z ≤ 12.0	12.0 < p _z ≤ 16.0	p _z > 16.0
0 < p _T ≤ 0.25	0.016	0.01	0.018	0.043	0.073
0.25 < p _T ≤ 0.5	0.024	0.008	0.012	0.024	0.039
0.5 < p _T ≤ 1.0	0.237	0.013	0.011	0.019	0.033
р _т > 1.0	-	0.186	0.039	0.039	0.058

Моделирование показало возможность измерения односпиновой асимметрии инклюзивного рождения K_s⁰- мезонов с точностью 2-3% в нескольких кинематических диапазонах

07.03.2023

Моделирование $\omega \to \pi^+\pi^-\pi^0$ - мезона

Моделирование показало возможность измерения односпиновой асимметрии инклюзивного рождения ω(782)-мезонов с с точностью 2-3% интегрально.

07.03.2023

Настройка однородности магнита мишени

В результате оптимизации максимальная относительная вариация составляет ~±4×10⁻⁴, а среднеквадратичное отклонение от константы по объёму ~±1.3×10⁻⁴, что соответствует требованиям к допустимой неоднородности поля ~±1.65×10⁻⁴.

Проблемы сеанса 2018 и методы решения

- Низкая эффективность трековых детекторов и плавание эффективности во времени
- Зависимость эффективности от продува и номера трубки
- Отсутствие камеры DC0
- Необходимость улучшить работу трековых детекторов
- Необходимость моделирования в связи с неэффективностью детекторов

R(t)- зависимость дрейфовых камер

Efficiency for DTSX0L2 (T14-T18)

0.9 0.8 0.7 0.6 Efficiency 0.4 Tube14 0.3 Tube18 Tube15 0.2 Tube16 0.1 Tube17 0 0.1 0.2 0.3 0.4 0.6 0.7 0.5 R, cm

Efficiency for DTSX0L3 (T15-T18)

Настройка дрейфовых камер

07.03.2023

FtsPlane Efficiency Rms (1 - 12 hour)

07.03.2023
Настройка пропорциональных камер

В. Мочалов, Семинар ОФВЭ ПИЯФ

Help

Прецизионный волоконный годоскоп

Kuraray SCSF-38

В. Мочалов, Семинар ОФВЭ ПИЯФ

07.03.2023

07.03.2023

Уточнение положения пучка

07.03.2023

Профиль пучка на мишени

Измерение поля спектрометрического магнита

По абсолютной нормировке, в среднем по объёму, расчётная и измеренная магнитные индукции практически совпали: разница составляет ~0.13% при ошибке процедуры сравнения, оцененной в ±0.15%

07.03.2023

Калибровка электромагнитного калориметра

Calibration Coefficients

07.03.2023

Результат калибровки

07.03.2023

Система сбора данных

<u>Average event size: ~2 kBytes</u> Data acquisition rate: ~(3-4)*10⁴ events/ 3 сек

07.03.2023

Система медленного контроля

07.03.2023

Сеансы 2021 и 2022

- Первоначальные цели: Измерение односпиновой асимметрии заряженных пионов (h+, h-) и некоторых резонансов, которые распадаются на пионы (ρ →π⁺π⁻, ω → π⁺π⁻π⁰, η[/](958), f₀(980), a₀(980), f₂(1270)) в области фрагментации неполяризованного пионного пучка на поляризованной протонной мишени
- HO!!!
- 2021 г. СОVID-команда ОИЯИ не приехала 2022 г. – авария на мишени
 - 1 декабря обнаружена сверхтекучая гелиевая течь в одноградусной ванне криостата поляризованной мишени.
 - 2-5 декабря ремонт поляризованной мишени и азотное охлаждение.

6 декабря — снова обнаружена течь в одноградусной ванне, теперь уже при азотной температуре — найдена с помощью продува ванны газообразным гелием. 7 декабря — дубненцы окончательно сдались и все уехали домой. Запустить поляризованную мишень не удалось.

07.03.2023

48

Изменение задач эксперимента:

- 2021 г. измерение поляризации гиперонов и выстроенности векторных мезонов на ядерных мишенях на пучке пи-мезонов, измерение фактора разбавления мишени
- 2022 г. измерение поляризации гиперонов и выстроенности векторных мезонов на ядерных мишенях на пучке К-мезонов

Измерение поляризации гиперонов

 Поляризация адронов определяется из угловых распределений продуктов распада. Частичное нарушение четности в слабых распадах гиперонов приводит к определенной зависимости углового распределения продуктов их распада. Так, в случае распада Λ-гиперона из состояния с поляризацией Р, на п⁻мезон и протон, зависимость вероятности вылета протона под углом θ_p к направлению вектора поляризации гиперона Р имеет вид:

 $dN/d\Omega = (1 + \alpha Pe_p) / 4\pi = (1 + \alpha Pcos\theta_p) / 4\pi.$

где е_р — единичный вектор в направлении движения протона в системе покоя гиперона.

системе

07.03.2023

Измерение выстроенности

• Как и в случае гиперонов, для векторных мезонов можно измерить и сравнить выстроенность. Выстроенность векторных мезонов (V) описывается элементами р_{т.т} спиновой матрицы плотности р, где т и т' обозначают спиновые компоненты вдоль оси квантования. Диагональные элементы р₁₁, р₀₀ и р₋₁₋₁ для матрицы с единичным следом являются относительными интенсивностями компонент спина мезона т принять значения 1, 0, и –1 соответственно, которые должны быть равны 1/3 для случая неполяризованных частиц. Некоторые элементы матрицы могут быть определены из измерений угловых распределений продуктов распада.

Набранная статистика

- 2021 г. Измерения проведены на шести ядерных мишенях (C, Si, Al, Cu, Sn, Pb) и «пустой» мишени. Всего набрано несколько сот миллионов триггеров на взаимодействие
 - 2022 г. 7-16 декабря набор статистики на ядрах на К- пучке с целью определить спиновую выстроенность в К*(890) и поляризацию *Х*-гиперонов. Набрано 40 млн. событий с взаимодействиями К- мезонов с ядрами.

Анализ 2018, 2021 и 2022

- Получение первых данных по измерению односпиновой асимметрии заряженных пионов по данным сеанса 2018
 г. – моделирование эффективности реконструкции с учетом эффективности детекторов, анализ ложной асимметрии
- Получение первых результатов по определению Азависимости инклюзивного рождения K⁰_s-мезонов.
- Анализ возможности и измерение выстроенности *р*мезонов
- Реконструкция и возможность измерения выстроенности других векторных мезонов
- Измерение поляризации Л-гиперонов

Определение А-зависимости инклюзивного рождения *К*⁰-мезонов

0.0 < x_p < 0.3 and 0.5 GeV/c < p_p < 1.0 GeV/C

0.3 < x_c < 0.4 and 0.2 GeV/c < p_z < 0.5 GeV/C

 $0.4 < x_{\rm p} < 0.5$ and $~0.5~GeV/c < p_{\rm r} < 1.0~GeV/C$

В. Мочалов, Семинар ОФВЭ ПИЯФ

рő

- 7

0.6

40

30

20

0.3

0.4

0.5

1.798e+06 ± 1.320e+01

5.149e+06 ± 2.242e+01

4.158e+06 + 3.711e+01

6.784e+06 : 5.778e+01

2.315e+06 ± 8.073e+01

0.7

x-x+ invariant mass [GeV]

Измерение поляризации Л-гиперонов

Анализ возможности и измерение выстроенности мезонов

Выделение сигнала от p0 - мезона в системе спиральности(H).

07.03.2023

Работы группы ПИЯФ

- Участие в работах и наборе экспериментальных данных: В.А. Андреев, А.Б. Гриднев, Н.Г. Козленко, В.С. Козлов, В.А. Кузнецов, Д.В. Новинский, В.И. Тараканов, В.С. Темирбулатов, И.А. Цураков
- Очень важная часть установки: пропорциональные камеры (запуск и контроль работы в сеансе)
- Подготовка больших дрейфовых камер (предполагались для ИТЭФ) – планируется перевозка летом 2023 г.
- Участие в анализе данных

В. Мочалов, Семинар ОФВЭ ПИЯФ

07.03.2023

07.03.2023

07.03.2023

Стратегия развития эксперимента

- Поиск финансирования для канала 24
- Изготовление новой поляризованной мишени (подготовка договора с ОИЯИ) – к концу 2025 г.
- Подготовка еще одного годоскопа на основе сцинтилляционных волокон (размером >8x8 см)
- Подготовка и ввод в состав установки дрейфовых камер ПИЯФ

 Набор данных для измерения поляризации гиперонов и выстроенности на пучках пи-, К- и протонов

Заключение

- В ИФВЭ начались исследования спиновых эффектов на экспериментальной установке СПАСЧАРМ с участием группы НИЦ КИ - ПИЯФ
- Физическая программа дополняет программу эксперимента SPD в ОИЯИ
- Детекторы установки подготовлены к эффективной работе, но подвела поляризованная мишень Надеемся на успешное создание новой поляризованной мишени
- Первые физические результаты ожидаются на конференции ДСПИН-2023 (сентябрь) и ЯДРО-2023 (октябрь)
- Важнейшая задача финансирование канала 24

Backup slides

Односпиновая асимметрия в наивной партонной модели

Асимметрия подавлена фактором a_sm

In this note we have pointed out that the asymmetry off a polarized target, and the transverse polarization of a produced quark in $e^+e^- \rightarrow q\bar{q}$, or in $qq \rightarrow qq$ at large p_{τ} , or in leptoproduction, should all be calculable perturbatively in QCD. The result is zero for $m_{a} = 0$ and is numerically small if we calculate m_{a}/\sqrt{s} corrections for light quarks. We discuss how to test the predictions. At least for the cases when P is small, tests should be available soon in $large-p_{\tau}$ production [where currently $P(\Lambda) = 25\%$ for $p_T \gtrsim 2 \text{ GeV}/c$], and e^+e^- reactions. While fragmentation effects could dilute polarizations, they cannot (by parity considerations) induce polarization. Consequently, observation of significant polarizations in the above reactions would contradict either QCD or its applicability.

Капе, Pumpkin and Repko PRL 41 1978 В формуле сечения процесса 2→2 нет спиновозависящих функции

$$E_h \frac{d\sigma^{AB \to hX}}{d^3 p_h} = \sum_{a,b,c,d} \int dx_a dx_b dz_h f_a(x_a) \cdot f_b(x_b) \cdot \frac{\hat{s}}{z_h^2 \pi} \frac{d\sigma^{ab \to cd}}{d\hat{t}} \delta(\hat{s} + \hat{t} + \hat{u}) \cdot D_{h/c}(z)$$

07.03.2023

Первые измерения односпиновой асимметрии в Протвино

В 1978 г. (почти 40 лет!) первые исследования с использованием поляризованной протонной мишени ИФВЭ-ОИЯИ

07.03.2023

Модели, объясняющие поперечные спиновые эффекты

•Основные модели, объясняющие возникновение поперечной односпиновой асимметрии

•Спин-зависящая поперечная Функция фрагментации (Эффект Коллинза)

$$D_{h/q^{\uparrow}}(z, \vec{p}_{\perp}) = D_{h/q}(z, p_{\perp}) + \frac{1}{2} \Delta^{N} D_{h/q^{\uparrow}}(z, p_{\perp}) \vec{S}_{q}$$

•Функция распределения партонов внутри поперечно поляризованного протона (Функция Сиверса)

•Причина возникновения не обсуждается, например орбитальный момент

$$f_{q/p^{\uparrow}}(x,\mathbf{k}_{\perp}) = f_{q/p}(x,\mathbf{k}_{\perp}) + \frac{1}{2}\Delta^{N}f_{q/p^{\uparrow}}(x,\mathbf{k}_{\perp}) \mathbf{S}_{\mathbf{T}} \cdot (\hat{\mathbf{P}})$$

Вклад высших (Twist-3) диаграмм (Qiu-Sterman, Efremov, Ко •Данные вычисления связаны с функцией Сиверса
Комбинация разных эффектов

В. Мочалов, Семинар ОФВЭ ПИЯФ Анимация J. Bruhwel, JLAB

K. Bruhwel - TJNAF - 2005

IHEP/1968 -1977 HERA Collaboration (France-USSR)

- Polarization in elastic scattering of particles and antiparticles on polarized protons at 40 and 45 GeV.
- Pomeron may carry the spin flip interaction (the first experimental hint)
- Polarization in the elastic scattering of particle and antiparticle is not equal each to other with opposite sign in general, as it was predicted in the asymptotic model [S.M. Bilenky et al. 1963]
- The energy variation of polarization depends on the type of particles and the magnitude of t.
- Spin rotation parameter is consistent with the Chou -Yang model of rotating hadronic matter.
- Chirality conservation hypothesis does not work

Поляризация в реакции π⁻р_↑→π⁰n

- Поляризация *P(t)* в области 0<|t|<0.35 (GeV/c)² равна (5.0±0.7)%.
- Существует локальный минимум в области при t=-0.25 (GeV/c)^{2.}
- Поляризация имеет минимум в области минимума в дифференциальном сечении.
- Поляризация осциллирует.

Поляризация в реакциях **π⁻p**,→η**n** and **π⁻p**,→η'(958)n

- Поляризация в реакции тр→nп при 40 ГэВ велика в широком интервале 0.05<-t<1.6 (GeV/c)² и достигает величины A_N=(-44±11)% в области |t| 0.8-1.6 (GeV/c)²
- Минимум поляризации достигается в точке изменения наклона сечения
- Поляризация меняет знак при -t=1.8 (GeV2/c)².
- Среднее значение поляризации в реакции π⁻p_↑→η['](958)n в области 0.05< -t <0.5 (GeV2/c)² составляет (-17± 8)%.

<u>.D. Apokin et al., Z.Phys.C35:173,1987.</u>

Асимметрия в реакциях <mark>π⁻р,→ω(783)n и π⁻р</mark>,→f₂(1270)n

07.03.2023

- ω регистрируется в моде распада πγ (branching 8.9%).
- Асимметрия велика в обеих реакциях
- Асимметрия минимальна
 примерно в области
 изменения наклона
 сечения как для ω,

так и для f₂

В. Мочалов, Семинар ОФВЭ ПИЯФ

70

Выводы по эксклюзивным реакциям

 Большие значения поляризации (асимметрии) были обнаружены при 40 ГэВ в реакциях

 $\begin{array}{l} \pi^{-}p_{\uparrow} \rightarrow \pi^{0}n, \pi^{-}p_{\uparrow} \rightarrow \eta n, \pi^{-}p_{\uparrow} \rightarrow \eta' (958)n , \pi^{-}p_{\uparrow} \rightarrow \omega(783)n, \\ \pi^{-}p_{\uparrow} \rightarrow f_{2}(1270)n \end{array}$

- Для всех реакций минимум асимметрии совпадает с изменением наклона дифференциального сечения
- Во всех реакциях наблюдаются осцилляции асимметрии
- Есть указание, что асимметрия больше по величине для «тяжелых» частиц и в области —t=1 (ГэВ/с)² асимметрия отрицательна, тогда как для π⁰-мезона положительна.
- Ни одна теоретическая модель НЕ может объяснить результаты измерений.

Исследования инклюзивных процессов на установке ПРОЗА-М

07.03.2023
07.03.2023

В. Мочалов, Семинар ОФВЭ ПИЯФ

Большое число реакций (диссертаций?)

NY	particle		D/ S	INY INY	Parlicie		<u> D/ S</u>
1	Π+	4.2·10 ⁹		20	η→ п ⁺ п [−] п ⁰	5.3·10 ⁶	0.2
2	n-	8.7·10 ⁹		21	ω(782) → π ⁺ π [−] π ⁰	3.5·10 ⁷	0.25
3	K +	6.7·10 ⁸		22	ω(782)→ γ п ⁰	3.8·10 ⁷	2.0
4	K⁻	9.0·10 ⁸		23	φ(1020)→ K ⁺ K [−]	4.3·10 ⁶	0.3
5	р	9.2·10 ⁷		24	ρ⁺(770)→ π⁺ π ⁰	2.9·10 ⁸	6.0
6	p.	2.6·10 ⁸		25	ρ [–] (770)→ π [–] π ⁰	7.5·10 ⁸	3.0
7	n	3.2·10 ⁸		26	К ⁰ s→ п ⁰ п ⁰	1.7·10 ⁷	3.5
8	n٠	8.0·10 ⁷		27	а₀(980)→ η п⁰	1.8·10 ⁷	9.0
9	κ ^ο _L	1.0·10 ⁸		28	$\Lambda \rightarrow p \pi^-$	1.4·10 ⁶	0.1
10	Π ⁰ →ΥΥ	4.3·10 ⁹	0.1	29	$\tilde{\Lambda} \rightarrow \tilde{p} \pi^+$	1.1·10 ⁶	0.05
11	η →γγ	4.2·10 ⁸	0.5	30	$\Lambda \rightarrow n \pi^0$	1.8·10 ⁶	3.0
12	η'→ π ⁺ π [−] η	8.3·10 ⁵	0.05	31	$\tilde{\Lambda} \rightarrow \tilde{n} \pi^0$	7.7·10 ⁵	0.45
13	К ⁰ s→ п+ п ⁻	1.3·10 ⁷	0.3	32	$ ilde{\Delta}^{++} ightarrow$ р п $^+$	9.3·10 ⁶	2.0
14	ρ⁰(770)→ π+ π [–]	4.2·10 ⁸	2.5	33	Δ → р. ⊔_	2.5·10 ⁷	5.5
15	K⁰*(892)→ K ⁺ π [−]	1.1·10 ⁸	0.7	34	Ξ ⁻ → Λ π ⁻	1.9·10 ⁶	0.1
16	К̃ ^{0*} (892)→ К [–] п ⁺	4.3·10 ⁷	2.0	35	Ξ +→ Λ̃ π+	1.6·10 ⁶	0.1
17	K ^{+*} (892)→ K ⁺ ⊓ ⁰	1.9·10 ⁷	2.6	36	Σ ⁰ → Λγ	1.2·10 ⁶	0.5
18	Ќ^{-*}(892) → К [−] п ⁰	3.8·10 ⁷	1.3	37	Σ ⁰ (1385)→ Λ π ⁰	3.9·10 ⁶	0.2
19	ω(782)→ e+ e⁻	1.7·10 ⁵	0.5	38	ρ⁰(770)→ μ+ μ−	9.7·10 ⁴	0.7

СТАТИСТИКА С ИСПОЛЬЗОВАНИЕМ ПИ- ПУЧКА

Мишенная станция

Схема мишенной станций каналов 24А и 24Б. Г – мишень, МТ1÷МТ3 – дипольные магниты, МС – магниты-корректоры, Dump поглотитель. Приведенный на схеме мишенной станции вариант наведения протонного пучка на мишень соответствует отбору нейтральных вторичных частиц в канал 24А и положительно (отрицательно) заряженных частиц в канал 24Б. Пунктирными линиями показаны траектории вторичных заряженных частиц, отбираемых с канал 24В с ненулевыми углами рождения в мишени.

07.03.2023

ОПТИЧЕСКАЯ СХЕМА КАНАЛА 24А

Базовая оптическая схема канала 24А пучков ротонов и антипротонов от распада $\Lambda(\overline{\Lambda})$ -гиперонов. Q— квадрупольные линзы, М — дипольные магниты, С — коллиматоры, МС — магнитыкорректоры, Т и Т_{ехр} — мишени канала и экспериментальной установки, пунктир — дисперсия в горизонтальной плоскости для $\Delta p/p = 10\%$.

07.03.2023

Параметры пучка поляризованных протонов в конце канала.

Профили пучка на мишени экспериментальной установки для p =**45** ГэВ/с и *σ*_{Δ*p*/*p*} = **1.2%**. 07.03.2023 В. Мочалов, Семинар ОФВЭ ПИЯФ 76

ФИЗИЧЕСКОЕ ОБОСНОВАНИЕ ИССЛЕДОВАНИЙ НА ПЕРВОМ ЭТАПЕ (ОДНОСПИНОВЫЕ ЭФФЕКТЫ)

- Происхождение односпиновых асимметрий в адронных реакциях не ясно.
 Тем не менее, в современных феноменологических моделях есть отдельные успехи описания спиновых эффектов в непертурбативной области КХД..
 - Модели Сиверса и Коллинза.
 - В киральной кварковой модели Трошина-Тюрина описывается качественное поведение односпиновой асимметрии инклюзивных пионов и поляризации гиперонов в столкновениях неполяризованных адронов.
 - В модели эффективного цветового поля с использованием заметного числа параметров удалось описать асимметрию в нескольких десятках реакций, а также поляризацию гиперонов, антигиперонов и выстроенность (поляризация) векторных мезонов

ФИЗИЧЕСКИЕ ЗАДАЧИ ЭКСПЕРИМЕНТА С ПОЛЯРИЗОВАННОЙ МИШЕНЬЮ

- Детальное исследование различных поляризационных эффектов в инклюзивных процессах образования частиц и резонансов, состоящих из легких u, d и s-кварков.
- Основной задачей проекта на первом этапе является детальное исследование поляризационных эффектов в инклюзивных процессах. Эксперименты с использованием мезонных пучков обнаружили отличную от нуля односпиновую асимметрию, как в центральной области, так и в области фрагментации пучка. Значительные эффекты можно ожидать вблизи границы фазового объема.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

- Разнообразие типов пучков, конечных состояний и наличие нескольких измеряемых односпиновых наблюдаемых позволяют провести глобальное исследование.
- Анализ этих данных дает возможность выявить закономерности поведения односпиновых наблюдаемых от аромата участвующих в реакции кварков, спиновой структуры адронов, содержащих эти кварки и кинематических переменных.

Сравнение с моделями всей совокупности данных может позволить сделать важный шаг в определении механизма поляризационных явлений и природе таких явлений, как конфайнмент, фрагментация кварков и спонтанное нарушение киральной симметрии.

FODS – EXPERIMENT: SINGLE SPIN ASYMMETRY OF CHARGE PARTICLES USING POLARIZED PROTON BEAM

	Value		
Primary Beam Intensity, p/cycle	10 ¹³		
Beam Intensity	3x10 ⁷		
Polarization	39 ± 2% (theoretical)		
Momentum	40 GeV		
Δ Ρ/Ρ	4.5% (theoretical)		
Beam dimensions at the target region			
σ (X)	10.6 mm		
σ (Y)	8.1 mm		
Θ (X)	± 6.5 mrad		
Θ(Υ)	± 6.0 mrad		
п - contamonation	0.8%		
V. MOCHALOV, SPIN-2012, IHEP SPIN	20.09.2012		

RUGRAIV

80

МАГНИТ МИШЕННОЙ СТАНЦИИ

Схема поперечного сечения магнита МТЗ. Все размеры приведены в см

ПАРАМЕТРЫ ПРОТОННОГО ПУЧКА В ПРОМЕЖУТОЧНОМ ИЗОБРАЖЕНИИ

Центральный импульс пучка, ГэВ/с	15	30	45
Размер эффективного источника протонов в вертикальной плоскости (σ_y), мм	13.8	10.0	8.5
Коэффициент увеличения (у/y ₀) для центрального импульса пучка	1.40	2.00	2.40
Размер пучка протонов в вертикальной плоскости (σ _у), мм	20.6 (22.1)	20.9 (21.9)	21.2 (21.7)
Размер пучка протонов в горизонтальной плоскости (σ _x), мм	10.0 (32.2)	7.7 (37.0)	6.6 (35.0)

Система измерения поляризации

Центральный импульс пучка (р),	15	45	
ГэВ/с			
Размеры пучка ($\sigma_{\mathrm{x}} imes \sigma_{\mathrm{y}}$), мм	9.6 × 8.1	2.8 × 1.6	
Расходимость пучка ($\sigma_{\mathbf{x}'} imes \sigma_{\mathbf{y}'}$),	0.50 × 0.57	0.13 × 0.24	
мрад			
Потери частиц, %	16	13	

07.03.2023

SPIN FLIPPER (SHATUNOV TALK) 2 Helical magnets:

обмотка магнита

 $B_{max} = 47 \text{ kGs}; \lambda = 2.5 \text{ m}$ Correctors:*L*=30 cm; B= 23 kGs; tilt = ± 0.1 rad;

Total length 6.5 m Flipper optics: practically is equal to empty straight 6.5 m; Spin transparency ≈ 97%

Поляризованная мишень

07.03.2023

- <u>Target material</u>: pentanol C₅H₁₂O with TEMPO radical
- Polarization value: up to 75%
- Dilution factor 7.3
- Target dimensions: length 200 mm, diameter 18 mm
- Target thickness: 13.2 g/cm² which is ~10% of interaction length for 28 GeV pions and ~15% for 50 GeV protons

Polarized target operates at extremely low temperature achieved by dilution of He₃ in He₄:

- The RF-pumping of polarization takes place in 2.4 T magnetic field at RF-frequency of ~70 GHz at the temperature of ~ 100 mK
- Polarization decay time is ~1000-2000 hours in 0.4 T magnetic field at the temperature of 30-40 mK- Polarization reversal: every 1-2 days

Магнит поляризованной мишени

Dipole magnet with conventional 'warm copper coils and ferromagnetic (permend

<u>poles</u>

- Length (poles): 1 m
- Aperture width: 80 mm
- <u>Variable vertical gap</u>: 75 mm (closed yoke) 315 mm yoke)
- Nominal coil current 1.4 kA, power consumption: 3
- <u>Closed yoke</u>: Magnetic field in the aperture B = 2.4
- **Open yoke** Magnetic field in the aperture $B \approx 0.4$

Critical requirement

- The <u>uniformity</u> of magnetic field of <u>2.4 T</u> in the volume of <u>D = 18 mm & L=200 mm</u> must be bette ~<u>1.5×10⁻⁴</u>
- <u>Aggravating factor</u>: all ferromagnetics are <u>clo</u> <u>saturation</u>

Результат настройки мишени

07.03.2023

Охранная система

<u>Veto detector for charged particles and y-quanta</u>

- Scintillator-Lead sandwich of the thickness ~ 5X₀
- Light-collection, using 1 mm wave-shifting fibers BFC-91AMC
- Photodetectors: photomultipliers ΦЭУ-84.
- Total number of channels: 12

<u>Usage:</u>

- Trigger and/or offline veto for elastic, quasi-elastic and some other exclusive processes
- The veto system has shown its usefulness for the better selection of events within the target rather than in surrounding materials

Спектрометрический магнит

07.03.2023

Трековая система

Имя	Расстояние	Композици	Шаг	Размер	Число
	от мишени,	я	проволок	камеры,	каналов
	[м]	камер	(диаметр	Y[см] ×X[см]	
			трубок), [мм]		
DTS1	1,67	X,Y,U,V	30	72 × 96	336
DTS3	5,29	X,Y,U	30	120 × 168	432
DTS4	8,07	X,Y,U	30	192 × 240	672
DTS5	9,77	X,Y,U	30	192 × 240	672
PC1	0,55	Χ,Υ	1	20 × 20	400
PC2	0,63	U,V, + 15 ⁰	1	20 × 20	400
PC3	0,68	U,V, - 15 ⁰	1	20 × 20	400
DTS0	1,00	U,V,X,Y	15	48 × 48	384
		иало			

Характеристики трековой системы

07.03.2023

Калориметр

- 720 of lead-glass cells of the size 38×38×450 mm³, depth ~18X₀
- Covered area: H×V ≈ 1.15×0.92 m²
- Photodetectors: ФЭУ-84
- Energy resolution: σ_E/E ≈(12-14)%/√E, E in GeV

Distance from the target: 11 m

МОДЕЛИРОВАНИЕ ОБРАЗОВАНИЯ ЧАСТИЦ

- Ошибки измерения односпиновой асимметрии в реакциях
 π⁻p_↑ → ω(782)Х, ρХ, η'(958)Х составят 0.3÷3% для различных кинематических интервалов
- Ожидаемая точность измерений в реакции π⁻ p_↑→ f₂(1270) Х будет еще лучше (0.1÷1%)
- В. Мочалов, Семинар ОФВЭ ПИЯФ

Некоторые предсказания

Предсказания асимметрии для реакций p[↑] + p(A) $\rightarrow \pi^+$ + X (слева), p[↑] + p(A) $\rightarrow \pi^-$ + X (в центре) и p[↑] + p(A) $\rightarrow \pi^0$ + X (справа)

В. Мочалов, Семинар ОФВЭ ПИЯФ

07.03.2023

А-зависимость

Аномальная А-зависимость А_N в реакции $p^{\uparrow} + A \rightarrow n + X$. На протонной мишени отрицательная асимметрия порядка -5%. На алюминиевой мишени A_N близка к нулю, а на мишени из золота знак асимметрии меняется и возрастает втрое: А_N ≈15%. При этом значения односпиновой асимметрии сильно зависят от центральности взаимодействия.