частоты лазера накачки

для определения его энергии путем сканирования

Обосновывается способ оптической накачки изомера

ВНИИМ имени Д.И.Менделеева

<u>Ф. Ф. Карпешин</u>

M3OMEPA 2291h

РЕЗОНАНСНАЯ ОПТИЧЕСКАЯ НАКАЧКА 8.3-ЭВ ИЗОМЕРА 229Th

NON-RADIATIVE TRANSITIONS IN MUONIC ²³⁸U ATOMS

Бруно Понтекора

M.Ya.Balatz, L.N.Kondrat'ev, L.G.Landsberg, P.I.Lebedev, Yu.V.Obukhov, and B. Pontecorvo. Soviet Phys. ZETP, **11**, 1239 (1960)

EXPERIMENTAL NON-RADIATIVE TRANSITION PROBABILITIES

Ch. Roesel, P. David, H. Folger, H. Haenscheid et al. Radiationless transition probabilities in muonic 208Pb, 232Th, and 238U. Z. Phys. A - Hadrons and Nuclei **340**, 199-208 (1991)

	$2p \rightarrow 1s$	$2p^{l} \rightarrow 1s$	$2p^h \rightarrow 1s$	$3p \rightarrow 1s$	$3d \rightarrow 1s$
This work	26.2 ± 2.6	21.6±3.2(1.6)	31.1±2.8(1.3)	88.9 ± 4.3	12.8 ± 1.4
Zaretski & Novikov [2, 3] with σ_t from [27] with σ_t from [28]	22.4 29.8	21.1 28.4	24.2 32.0	64.7 68.5	
Teller & Weiss [7]	20.7	20.0	21.7	59	9.6
Karpeshin & Nesterenko [8]	$11 \div 15^{a}$ $19 \div 26^{b}$			55 ∻ 65° 57 ∻ 69 ^d	$\begin{array}{c} 19 \div 24^{\circ} \\ 25 \div 32^{\mathrm{f}} \end{array}$

CALCULATIONAL NON-RADIATIVE TRANSITION PROBABILITIES

 $F \ F \ Karpeshin \ and \ V \ 0 \ Nesterenko,$ J. Phys. B **17**, 705 (1991) $\Gamma_{r1} = \alpha_{\mu}^{(d)}(i \rightarrow f) \frac{8\pi(L+1)}{[(2L+1)!!]^2} \, \omega^{2L+1} b(EL; 0 \rightarrow \omega).$

QPNM:

$$b(EL; 0 \to \omega) = \sum_{g} B(EL; 0 \to \omega) \frac{\Delta/2\pi}{(\omega - \omega_g)^2 + (\Delta/2)^2}$$

(И проще конструктивно)

10⁻¹⁹ - в ионах Th+++

Ядерно-оптические часы:

10⁻¹⁹

Востребованная погрешность не хуже

Достигнутая погрешность:

~5x10⁻¹⁸ – PTB

Свойства изомерной линии

- Длина волны распада изомера: 148.71(42) нм (8,338(24) эВ).
- Метод: вакуумно-ультрафиолетовая спектроскопия 229m Th, имплантированного в широкозонные кристаллы CaF₂ и MgF₂ на установке ISOLDE в ЦЕРН: arXiv: 2209.10276.
- Ширина: 10⁻⁵ Гц (10⁻¹⁹ эВ).
- Собственное время жизни: 2 ч 10 мин.
- Время жизни в нейтральных атомах: 10 мкс.
- Ширина в нейтральных атомах : 10⁻¹⁰ эВ.

Lifetimes in ions of ²²⁹Th

	Thl	Thll	ThIII	ThIV
experi ment	10 ⁻⁵ s	<10 ms	> 2 min	
theory	3.5 mcs with R=300	10 ms – with the probability of 40%	40 min	2 h

Experiment: Benedict Seiferle, Lars von der Wense, and Peter G. Thirolf, Phys. Rev. Lett. **118**, 042501 (2017).

Theory: F. F. Karpeshin and M. B. Trzhaskovskaya, Nucl. Phys. A **969**, 173 (2018); A **1010**, 122173 (2021).

INTERNAL CONVERSION RESONANCE TRADITIONAL $\alpha(\tau L; \omega) = \frac{\Gamma_c}{\Gamma_{\gamma}} \left| \begin{array}{c} R = \alpha_d \frac{\Gamma_a / 2\pi}{\Delta^2 + (\Gamma_a / 2)^2} \\ \alpha_d \sim [\text{MeV}]; R - \end{array} \right|$ ICC: α -- dimesionless dimesionless **R** – sharply resonant α – smoothly depends on ω R – depends α – independent of spectator electrons $\alpha = R$ at the boundary

ELECTRON SHELL AS A RESONATOR. Laser Assistance of BIC (NEET) and TEEN

NUCLEI WITH LOW-LYING ISOMERIC STATES

²³⁵U

Laser assistance of the 76 eV transition in ²³⁵U

B.A.Zon, F.F.Karpeshin, JETP, 70, 224 (1990):

Laser assistance of the 7.6 eV transition in ²²⁹Th

F.F.Karpeshin, I.M.Band, M.B.Trzhaskovskaya and B.A.Zon, Phys. Lett. 282B, 267 (1992)

Acceleration is predicted by 500 times with P ~ 1 mW/cm² Facilities: SHIPTRAP in Heidelberg, HYTRAP in GSI

Резонансное фотовозбуждение

Lars von der Wense and Chuankun Zhang, Eur. Phys. J. Ser. D. 2020. V. 74.

Схема экспериментальной установки, предложенной для прямого ядерного лазерного возбуждения на основе частотной гребенки ^{229m}Th.

Эскиз экспериментальной концепции

ОЦЕНКА ВРЕМЕНИ СКАНИРОВАНИЯ

- •Продолжительность импульса: 100 мкс.
- •Мощность импульса: 10 нВт.
- •Мишень: 1.6×10¹³ атомов ²²⁹Th.
- Ø 0.3 мм.

Итог: 65 изомерных атомов за импульс.

- Шаг сканирования: ~ $\Gamma_n \approx 10^{-10}$ эВ.
- На 1 эВ надо ~ 10^{10} шагов $\approx 10^{10}$
- На 77 МГц надо ~5000 шагов = 5000 c
- Для уточнения энергии надо несколько циклов

Электронная оболочка как *резонатор*

F.F. Karpeshin et al. /Nuclear Physics A 654 (1999) 579-596

Важно!!! 7р – возбужденное состояние!!! Иначе малость $\Gamma_n / \Gamma_a \approx 10^{-12}$

ПРЕИМУЩЕСТВА:

- Атомная ширина Г_а ≈ 10⁻⁸ эВ ≈ 100 Г_п ⇒
- Спектральная ширина каждого зубца может быть в 100 раз больше, при том же сечении.
- Шаг сканирования в 100 раз больше, то есть 50 шагов вместо 5000.
- Фейнмановская диаграмма в 965 раз сильнее, то есть время экспонирования на каждом шаге можно уменьшить ~в 1000 х. Итог: *выигрыи* в 100 х 965= 10⁵ раз

- В нейтральных атомах ²²⁹Th BK (внутренняя конверсия) приводит к уширению линии и соответственно к сокращению времени сканирования на 9 порядков.
- Механизм возбуждения изомерного состояния ядра в ионах – обратная резонансная конверсия – оебеспечивает дополнительный выирыш в <u>5 порядков</u>:

Excitation of the Isomeric 229*m*Th Nuclear State via an Electronic Bridge Process in 229Th+. S. G. Porsev, V.V. Flambaum, E. Peik, and Chr. Tamm, PRL 105, 182501 (2010)

FIG. 1. Two-photon electronic bridge process. The single and double solid lines relate to the electronic and the nuclear states, respectively. The dashed lines are the photon lines.

S. G. Porsev et al. PRL 105, 182501 (2010)

FIG. 3. Dependence of the coefficient G_2 [see Eq. (5)] on the nuclear transition frequency ω_N as calculated on the basis of the data listed in Table I.

$$R \Box \beta \qquad \beta \approx \frac{1}{20} G_2$$

WARSAW EFFECT OF NUCLEAR LEVEL MIXING F. F. Karpeshin, S. Wycech, I. M. Band and M. B. Trzhaskovskaya, J. Zylicz, Phys. Rev. C 57, 3085 (1998).

$$\Psi_{low} = \alpha |\phi_g\rangle + \beta |\phi_{is}\rangle$$
$$\Psi_{up} = \alpha |\phi_{is}\rangle - \beta |\phi_g\rangle,$$

СЛЕДСТВИЯ:

1) Усилены переходы up \rightarrow low

2) Возбуждение изомера в результате «встряски». *F.F.Karpeshin, Nucl. Phys. A 654, 579 (1999)*

Таблица 1: Значения дискретных КВК $\alpha_d(M1; ns \to ns)$, вероятностей образования изомера β^2 и полных ширин дырочных состояний Г.

	1s	2s	3s	7s
$\alpha_d(M1; ns \to ns), \ \exists B$	2.57×10^{18}	$0.88 imes 10^{17}$	3.92×10^{15}	0.98×10^{10}
β^2	2.62×10^{-4}	$0.90 imes 10^{-5}$	$4.00 imes 10^{-7}$	1.99×10^{-12}
Г, эВ	88.2	14.3	15.5	
β^{2a}	1×10^{-5}	$0.7 imes 10^{-5}$		

^{a)} M. G. Kozlov, A. V. Oleynichenko, D. Budker, D. A. Glazov, Y. V. Lomachuk, V. M. Shabaev, A. V. Titov, I. I. Tupitsyn, and A. V. Volotka, Arxiv: 2308.05173.

3) Две линии в спектре фотоэлектронов, расстояние между которыми в точности равно энергии изомера.

4) Influence on ground-state g factor of highly charged 229Th ions: V. M. Shabaev, D. A. Glazov, A. M. Ryzhkov, C. Brandau, G. Plunien, W. Quint, A. M. Volchkova, and D. V. Zinenko, Phys. Rev. Lett. **128**, 043001 (2022).

ЗАКЛЮЧЕНИЕ

- Давно пришла пора оптических экспериментов для уточнения энергии изомера.
- Уширение линии изомера до 9 порядков в случае Th I. Уширением изомер обязан внутренней конверсии.
- Использование резонанса с электронной оболочкой в ионах Th II позволяет получить дополнительный выигрыш во времени сканирования до 15 порядков и более. Эффект достигается благодаря резонансному Rфактору ускорения, но главным образом вследствие уширения резонанса. Условие: *атом должен оставаться в возбужденном состоянии!*

- В фотоэффекте на внутренних оболочках возникают две электронные линии. Расстояние между ними в точности равно энергии изомера.
- Возбуждение изомера происходит вследствие встряски при образовании вакансий во внутренних оболочках: при обдирке внешних электронов, фотоэффекте, ионизации электронным ударом и т.п.
- Изучение g-фактора ядра в основном состоянии также

дает сведения о свойствах изомерного уровня.

Спасибо за внимание!

Коэффициенты внутренней конверсии – КВК: $\alpha = \Gamma_c / \Gamma_{\gamma}^{(n)}$ КВК достигают 9 порядков величины! И даже больше... $\Gamma_{\text{total}}^{(n)} = (1 + \alpha)\Gamma_{\gamma}^{(n)}$ $T_{\text{total}}^{(n)} = \hbar / \Gamma_{\text{total}}^{(n)} = T_{\gamma}^{(n)} / (1 + \alpha)$

Resonance IC

