Алгебраические методы восстановления координат в катодных стриповых камерах

И. Б. Смирнов

Петербургский институт ядерной физики, Национальный исследовательский центр "Курчатовский институт", Гатчина 188300, Россия

Семинар ОФВЭ, 21.06.2021

И. Б. Смирнов (ПИЯФ)

Семинар ОФВЭ, 21.06.2021 1 / 35

План

- 1. Введение.
- 2. Центр тяжести: модернизация, новый метод.
- 3. Дифференциальный метод: вывод, свойства.
- 4. Фитирование параметров, компенсация дифференциальной нелинейности.
- 5. Тестирование.
- 6. Выводы.

Введение, катодные стриповые камеры

- Идея измерения координаты катодом (или управляющей сеткой): G. Charpak, et al., NIM 80(1970)13.
- "Zero-crossing" с линии задержки: R. Grove, et al., NIM 89(1970)257.
- Центр тяжести лавины по отношению зарядов двух стрипов: G. Charpak, F. Sauli, NIM 113(1973)381.
- Центр тяжести лавины по центру тяжести зарядов стрипов: G. Charpak, et al., CERN 73-11.
- Вычитание смещения (bias) (to decrease contribution of the noise): G. Charpak, et al., NIM 148(1978)471, NIM 167(1979)455.
- Расчет распределения наведенных зарядов:
 - E. Gatti, et al., NIM 163(1979)83.
 - Экспериментальное подтверждение: F. Piuz, et al., NIM 196(1882)451.
 - Формула с одним параметром:
 E. Mathieson, et al., NIM 227(1984)277, NIM A270(1988)602.
- Центр тяжести лавины по 3-стрипам, с распред. Гаусса или параболическим (результат совпадает с тем, что будем назвать симметричными дифференциальными методами или формулами):

I. Endo, et al., NIM 188(1981)51.

Аналогичного корректного решения для функции Гатти нет.

- Зигзагообразные (шевронные) стрипы для уменьшения дифференциальных нелинейностей простых формул,
 - T. Miki, et al., NIM A 236(1985)64.

Введение (2)

- Центр тяжести лавины по 4-стриповому симметричному дифференциальному методу: Э. М. Спириденков, private communication, 1994; и 5-стриповому симметр. с частными параметрами:
 Е. М. Спириденков, Доклад ПИЯФ, 2016.
- Ещё несколько публикаций разных авторов с различными формулами, не похожими друг на друга.
- Микроструктурные газовые детекторы, история разработки:

From M. Titov, L. Ropelewski, Mod. Phys. Let. A 28(2013)1340022:

• Детекторы с резистивными элементами и разделением зарядов. Пример: resistive-strip bulk micromegas T. Alexopoulos, et al., NIMA 937(2019)125

Введение (3)

• Еще пример: a resistive Micromegas [D. Attie, et al., NIMA 957(2020)163286]

- Кремниевые детекторы, стинциляционные детекторы.
- Возможная загрузка современных MPGD МГц/мм²: М. Titov, L. Ropelewski, Mod. Phys. Let. А 28(2013)1340022. Фитирование/вычисление по алгебраическим формулам 10² – 10⁴, причем знаменатель — порядка МГц.
- Что точнее: центр тяжести или дифференциальный метод???
- Компенсация смещений?
- фитированию?

Методы центра тяжести (центра масс), простой метод (COG, Center Of Gravity)

x_{er} — "Estimate Relative" по отношению

 $\kappa x_{
m gc}$. Окончательная оценка $x_{
m e} = x_{
m gc} + x_{
m er}$.

- Зависит от общего пьедестала.
- Отсутствуют параметры для оптимизации.

Методы центра тяжести, простой метод (COG), дисперсия

Дисперсия (для справки, в моих обозначениях):

для стрипов с одинаковым и статистически независимым шумом с дисперсией D(q) [Gatti, 1979] *очень приблизительно*:

$$D(\mathbf{x}_{\mathrm{er}}) pprox rac{D(q)}{\left(\sum\limits_{i=j}^{j+n-1} q_i
ight)^2} \sum\limits_{i=j}^{j+n-1} (\mathbf{x}_{\mathrm{s},i} - \mathbf{x}_{\mathrm{gc}} - \mathbf{x}_{\mathrm{er}})^2$$

 $x_{\rm er}$ систематически смещен. Дисперсия несмещенной (исправленной) оценки $x_{\rm er, corr}$ [Gatti, 1979]:

$$D(x_{\rm er, corr}) \approx \frac{D(x_{\rm er})}{\left(\frac{\partial x_{\rm er}}{\partial x_{\rm tr}}\right)^2} \approx \frac{D(q) \sum_{i=j}^{j+n-1} (x_{\rm s,i} - x_{\rm gc} - x_{\rm er})^2}{\left(\sum_{i=j}^{j+n-1} (x_{\rm s,i} - x_{\rm gc} - x_{\rm er}) \frac{\partial q_i}{\partial x_{\rm tr}}\right)^2}$$

Метод центра тяжести со смещением зарядов (COGB, Center Of Gravity with Bias level)

Метод центра тяжести со смещением и степенью (COGBP, Center Of Gravity with Bia<u>s level and with Power)</u>

$$x_{\rm er} = \frac{\sum_{i=j}^{j+n-1} (x_{{\rm s},i} - x_{\rm gc}) (\max\{0, q_i - d\})^p}{\sum_{i=j}^{j+n-1} (\max\{0, q_i - d\})^p}$$

 +/- Небольшие систематические смешения;
 Непрерывный;
 Зависит от общего пьедестала;
 2 свободных параметра для оптимизации.

Согласно L. Scharenberg, et al., Presentation at RD51 Collaboration Meeting, 08.10.2020, Santiago de Compostela: p = 2 лучше, чем p = 1 (детали метода другие).

Дисперсия для COG со степенью, но без смещения (ф-лы со смещением громоздкие):

$$D(x_{\rm er}) \approx \frac{D(q)p^2}{\left(\sum_{i=j}^{j+n-1} q_i\right)^2} \sum_{i=j}^{j+n-1} (x_{{\rm s},i} - x_{\rm gc} - x_{\rm er})^2 q_i^{2p-2}$$

$$D(\mathbf{x}_{\rm er, corr}) \approx \frac{D(q) \sum_{i=j}^{j+n-1} (\mathbf{x}_{\rm s,i} - \mathbf{x}_{\rm gc} - \mathbf{x}_{\rm er})^2 q_i^{2p-2}}{\left(\sum_{i=j}^{j+n-1} (\mathbf{x}_{\rm s,i} - \mathbf{x}_{\rm gc} - \mathbf{x}_{\rm er}) q_i^{p-1} \frac{\partial q_i}{\partial \mathbf{x}_{tr}}\right)^2}$$

Одинаковая максимальная (и суммарная в каждом слагаемом) степень q = 2p - 2 в числителе и знаменателе и малая зависимость $D(x_{er,corr})$ от p.

И. Б. Смирнов (ПИЯФ)

Семинар ОФВЭ, 21.06.2021 9 / 35

Метод центра тяжести с обобщенной функцией заряда

Вместо одной степени можно рассмотреть степенной ряд. Например:

$$x_{er} = \sum_{i=1,n} (x_{si} - x_{gc}) \frac{f_i(q_1, q_2, ..., q_n)}{\sum_{j=1,n} f_i(q_1, q_2, ..., q_n)}$$

 f_i — любая функция со свойством $f_i(kq_1, kq_2, ...kq_n) = g(k)f_i(q_1, q_2, ...q_n)$ для любой константы k и любой функции g(k) (независимость результата от полного заряда).

- COGBP воспроизводится с $f_i(q_1, q_2, ..., q_n) = (\max\{0, (q_i d)\})^p$.
- Больше параметров включается по:

$$f_i(q_1, q_2, \dots, q_n) = \sum_{j=1,m} t_j \left(\frac{\max\{0, (q_i - d)\}}{\sum_{j=1,m} \max\{0, (q_i - d)\}} \right)^j$$

Эффективный вес $t_j \max\{0, (q_i - d)\}^{j-1}$, с которым усредняется заряд q_i , зависит от самого заряда, но не зависит от расстояния до трека \Rightarrow

(Дискуссионно:) непредсказуемость при отклонении от номинального распределения заряда.

Пример: имея два экспериметна с разными результатами мы не отдаем предпочтение экперименту с большим результатом только потому, что он больше.

Это касается и COGBP!

- Дифференциальную нелинейность, вероятно, можно уменьшать до пренебрежимо малых значений при помощи m + 1 свободных параметров для оптимизации.
- + Непрерывный;
- Зависит от общего пьедестала;
- Возможная непредсказуемость при отклонении от номинального распределения заряда.

Метод центра тяжести с плавающим кластером и весом, (COGW, Center Of Gravity with Weight function)

- Вместо дискретной группы стрипов можно рассмотреть плавающий "acceptance region".
- Его центр искомая координата трека (лавины).
- Плотность заряда будем считать постоянной в пределах стрипа и скачкообразно меняющейся при переходе к следующему стрипу.
- Заряд умножаем на модулирующую или весовую функцию w(x), такую что $w(x) \ge 0$, w(x) = w(-x) и w(x) = 0 для x > t, где t полуширина весовой функции.

$$R(x) = \frac{R_{\text{num}}(x)}{R_{\text{den}}(x)}$$

$$R_{\text{num}}(x) = \sum_{i=j}^{j+n-1} q_i \int_i^{i+1} w(z-x) z dz$$

$$R_{\text{den}}(x) = \sum_{i=j}^{j+n-1} q_i \int_i^{i+1} w(z-x) dz,$$

Решение: x_e : $x_e = R(x_e)$ или $R_{den}(x_e)x_e = R_{num}(x_e)$ или $x_e = \frac{R_{num}(x_e)}{R_{den}(x_e)}$ Добавим произвольный заряд Δ к каждому заряду:

$$x_{e} = rac{R_{num}(x_{e}) + \Delta x_{e} \int w(z)dz}{R_{den}(x_{e}) + \Delta \int w(z)dz}$$
 —истинно. Формулы зависят от общего пьедестала, но решение не зависит.

 Смещение зарядов и степень зарядов тоже применимы (но менее полезны и нарушают инвариантность относительно общего пьедестала).

И. Б. Смирнов (ПИЯФ)

Семинар ОФВЭ, 21.06.2021 11 / 35

Метод центра тяжести с плавающим кластером и весом, итерационное решение

Простейшая схема вычислений:

Применима при -1.0 < R'(x) < 1.0.

Примечание: ограничение шагов для сходимости при $R'(x)\leqslant -1.0$: Примечание (k) со раничение маго для содиности др. т. (с) < т. (к) < < < (к) < (к)

Будем искать алгебраическое решение (не итерационное решение методом последовательных приближений), причем то, к которому сходится эта прцедура.

Метод центра тяжести с плавающим кластером и весом, точные решения

- w(x) = const в интервале [-t, t] и 0 иначе \Rightarrow квадратное уравнение.
- w(x) ломаная линия ⇒ кубическое уравнение.
 Точки перелома и границы "чувствуют" границы стрипов ⇒ артефакты.
- w(x) парабола \Rightarrow уравнение четвертой степени.
- Проблемы: громоздкость уравнений, пересчет при переходе точек перелома в другие стрипы, выделение физических решений или аппроксимация меньших степеней при отсутствии "точных" физических решений со следующей итерацией.
- Полиномы Лежандра четных степеней P₂₁:

$$w(x) = a_0 + 1 - P_2(x/t) + \sum_{l=1}^{L} a_{P,l}(1 - P_{2l}(x/t)), \quad -t \leq x \leq t,$$

где *а***0**, *а*_{*P,1*} — неотрицательные фитируемые параметры,

Второй степени недостаточно для широких стрипов. Более высокие степени не дают аналитического решения. Смещение заряда и степень заряда аннулируют независимость от общего пьедестала.

- Квадратичные сплайны, непрерывные по первой производной.
- Такое решание быстрее, чем МL-фитирование каждого события с распределением заряда только в 10¹ – 10³ раз.

Метод центра тяжести с плавающим кластером и весом, сплайны

$$w(x) = \mathcal{P}_{1}(x) (H(x + x_{1}) - H(x - x_{1})) + \sum_{l=2}^{L} (\mathcal{P}_{l}(x) (H(x - x_{l-1}) - H(x - x_{l})) + \mathcal{P}_{-l}(x) (H(x + x_{l}) - H(x + x_{l-1}))$$

 $\mathcal{P}_{\pm l}(x) = a_{\mathcal{P},l} x^2 \pm b_{\mathcal{P},l} x + c_{\mathcal{P},l},$ $\mathcal{P}_{-l}(x) = a_{\mathcal{P},l} x^2 - b_{\mathcal{P},l} x + c_{\mathcal{P},l}$ Heaviside step function <math>H(x): 0 at x < 0, 1 at x > 0,and let's assume 0.5 at x = 0. $a_{\mathcal{P},1} = (y_1 - 1)/x_1^2, b_{\mathcal{P},1} = 0, c_{\mathcal{P},1} = 1$

 $a_{\mathcal{P},l} =$

$$\begin{aligned} & \frac{(2a_{\mathcal{P},l-1}x_{l-1}+b_{l-1})(x_{l-1}-x_l)-(y_{l-1}-y_l)}{(x_{l-1}-x_l)^2}, \\ & b_{\mathcal{P},l}=2(a_{\mathcal{P},l-1}-a_{\mathcal{P},l})x_{l-1}+b_{\mathcal{P},l-1}, \\ & c_{\mathcal{P},l}=y_{l-1}+a_{\mathcal{P},l}x_{l-1}^2-(2a_{\mathcal{P},l-1}+b_{l-1})x_{l-1}. \end{aligned}$$

Если парабола имеет участок < 0, она пересчитывается на ненулевую (с разрывом производной).

Вклады в уравнение — несколько страниц текста. Много "локальных минимумов" при фитировании, сложно найти наилучший минимум.

 $h_s = d$

Метод центра тяжести с плавающим кластером и весом, основные особенности

- Дифференциальную нелинейность, вероятно, можно уменьшать до пренебрежимо малых значений при помощи оптимизации свободных параметров;
- + Непрерывный;
- + Решения не зависят от общего пьедестала;
- Большая сложность.

Дифференциальные методы, 3 стрипа

Обобщенная формула:

$$x_{ ext{er}} = rac{\sum\limits_{i=j}^{j+n-1} a_{i-j+1} q_i}{\sum\limits_{i=j}^{j+n-1} b_{i-j+1} q_i}$$

 $x_{\rm e} = x_{\rm gc} + x_{\rm er}$ $a_m, b_m : m = \{1, 2, \dots n\}$

Для краткости: j = 1, если не указано.

 q_{\dagger}

3 стрипа.

q1

 q_2

$$x_{\rm er} = \frac{a_1q_1 + a_2q_2 + a_3q_3}{b_1q_1 + b_2q_2 + b_3q_3}$$
Uentp rpynni:

$$q_1 = q_3 \Rightarrow x_{\rm er} = 0 \Rightarrow a_2 = 0 \land a_3 = -a_1.$$
HenpepiBHOCTs npu nepexode k cnedytoued rpynne:

$$q_2 = q_3 \Rightarrow x_{\rm er} = \frac{q_1a_1 - q_2a_1}{q_1b_1 + q_2(b_2 + b_3)} = \frac{1}{2} \Rightarrow \frac{a_1}{b_1} = \frac{-a_1}{b_2 + b_3} =$$

$$x_{\rm er} = \frac{a_1(q_1 - q_3)}{2a_1q_1 - (2a_1 + b_3)q_2 + b_3q_3} = \frac{a_1(q_1 - q_3)}{2a_1(q_1 - q_2) + b_3(q_3 - q_2)}.$$

Дифференциальные методы, 3 стрипа (2)

Два варианта применения:

- 1. Применима при $q_3 \ge q_1$, а при $q_3 \le q_1$ можно заменить $q_1 \leftrightarrow q_3$ и $x_{\rm er} \rightarrow -x_{\rm er}$. Назовем её асимметричной (Asymmetric Differential Formula, ADF). Если $q_1 \le q_3 \le q_2 \land (q_1 \neq q_3 \lor q_2 \neq q_3)$, то знаменатель не нулевой (положительный), если $a_1 < 0 \land b_3 < -2a_1$.
- Симметризуем её для применения при q₃ ≤ q₁: b₃ = 2a₁.

$$x_{\rm er} = rac{1}{2} \; rac{-q_{1} + q_{3}}{-q_{1} + 2q_{2} - q_{3}}$$

(Symmetric Differential Formula, SDF)

Инвариантность относительно полного заряда и общего пьедестала.

Если f(q) — возрастающая функция и f(0) = 0, то:

Если f(q) — степенная функция:

$$\mathbf{x}_{\mathrm{er}} = rac{\sum\limits_{i=j}^{j+n-1} a_{i-j+1}f(q_i)}{\sum\limits_{i=j}^{j+n-1} b_{i-j+1}f(q_i)}$$

$$x_{\rm er} = \frac{\sum_{i=j}^{j+n-1} a_{i-j+1} (\max\{0, q_i\})^p}{\sum_{i=j}^{j+n-1} b_{i-j+1} (\max\{0, q_i\})^p}$$

Инвариантность относительно полного заряда (умножение на константу).

Те же соотношения между параметрами (но доказательство более сложное). Доказательство ограничений для *a*_i и *b*_i действительно.

Если $f(q_i) = \ln(q_i)$ при $q_i > 0$, то ур. инвариантно относительно полного заряда и частный случай степенной функции при $p \to 0$ (заменить q^p разложением в ряд Тэйлора $\exp(p \ln(q))$ относительно $p \ln(q)$).

И. Б. Смирнов (ПИЯФ)

Семинар ОФВЭ, 21.06.2021 17 / 35

Дифференциальные методы, дисперсия

$$D(x_{\rm er}) \approx \frac{D(q)p^2}{\left(\sum_{i=j}^{j+n-1} b_i q_i^p\right)^2} \sum_{i=j}^{j+n-1} (a_i - x_{\rm er} b_i)^2 q_i^{2p-2}$$

x_{ег} систематически смещен. Дисперсия несмещенной (исправленной) оценки x_{ег,согг}:

$$D(\mathbf{x}_{\mathrm{er,corr}}) \approx \frac{D(q) \sum_{i=j}^{j+n-1} (a_i - \mathbf{x}_{\mathrm{er}} b_i)^2 q_i^{2p-2}}{\left(\sum_{i=j}^{j+n-1} (a_i - \mathbf{x}_{\mathrm{er}} b_i) q_i^{p-1} \frac{\partial q_i}{\partial \mathbf{x}_{\mathrm{tr}}}\right)^2}$$

Одинаковая максимальная (и суммарная в каждом слагаемом) степень q (2p-2) в числителе и знаменателе и малая зависимость $D(x_{er,corr})$ от p.

Дифференциальные методы, 3 стрипа, литература

Асимметричная формула (повтор):

$$x_{\rm er} = \frac{a_1(q_1 - q_3)}{2a_1q_1 - (2a_1 + b_3)q_2 + b_3q_3} = \frac{a_1(q_1 - q_3)}{2a_1(q_1 - q_2) + b_3(q_3 - q_2)}.$$

- Не опубликована (или не найдена).
- При b₃ = 0 совпадает с так называемым "the ratio method"

$$x_{\rm er} = \frac{1}{2} \frac{q_{\mathbf{3}} - q_{\mathbf{1}}}{q_{\mathbf{2}} - \min\{q_{\mathbf{1}}, q_{\mathbf{3}}\}} \tag{1}$$

из работы N. Khovansky, et al., NIMA 351(1994)317, и многих последующих (разных авторов).

Симметричная формула (повтор):

$$x_{\rm er} = \frac{1}{2} \frac{-q_1 + q_3}{-q_1 + 2q_2 - q_3}$$

Совпадает с алгебраическим фитом для параболического распределения заряда: І. Endo, et al., NIM 188(1981)51.
 Совпадает с алгебраическим фитом для Гауссовского распределения заряда (f(q_i) = ln(q_i)): I. Endo, et al., NIM 188(1981)51, M. Yu. Bogolyubsky, et al., Instruments and Experimental Techniques, 45 (2002) 327.

 Отмечена независимость от общего пьедестала и полного заряда, и дан частный случай дисперсии для n = 3 и p = 1: К. Zubov, et al., JINR communication, P10-99-118.

Дифференциальные методы, 4 стрипа

4 стрипа.

$$x_{\rm er} = \frac{a_1q_1 + a_2q_2 + a_3q_3 + a_4q_4}{b_1q_1 + b_2q_2 + b_3q_3 + b_4q_4}$$

Центр группы:

 $q_2 = q_3 \neq 0 \land q_1 = q_4 \Rightarrow a_4 = -a_1 \land a_3 = -a_2$

Непрерывность при переходе к следующей группе:

$$q_{2} = q_{4} \Rightarrow \frac{q_{1}a_{1} + q_{2}(a_{2} - a_{1}) - q_{3}a_{2}}{q_{1}b_{1} + q_{2}(b_{2} + b_{4}) + q_{3}b_{3}} = \frac{1}{2} \Rightarrow \frac{a_{1}}{b_{1}} = \frac{a_{2} - a_{1}}{b_{2} + b_{4}} = \frac{-a_{2}}{b_{3}} = \frac{1}{2}$$
(2)

(либо выполняются частные формы этих уравнений с либо $a_1=0 \land b_1=0$ или $a_2-a_1=0 \land b_2+b_4=0$ или $a_2=0 \land b_3=0.)$

$$x_{er} = \frac{a_1(q_1 - q_4) + a_2(q_2 - q_3)}{2a_1q_1 + (2(a_2 - a_1) - b_4)q_2 - 2a_2q_3 + b_4q_4} = \frac{a_1(q_1 - q_4) + a_2(q_2 - q_3)}{2a_1(q_1 - q_2) + 2a_2(q_2 - q_3) + b_4(q_4 - q_2)}$$

Два варианта применения:

- 1. Применима при $q_3 \ge q_2$, а при $q_3 \le q_2$ можно заменить $q_2 \leftrightarrow q_3$, $q_1 \leftrightarrow q_4$ и $x_{\rm er} \to -x_{\rm er}$. Назовем её асимметричной. Если $q_1 \le q_4 \le q_2 \le q_3 \land (q_2 \ne q_3 \lor q_2 \ne q_4)$, то знаменатель не нулевой (положительный), если $a_1 \le 0 \land a_2 < 0 \land b_4 < -2a_1$.
- 2. Симметризуем её для применения при $q_{3}\leqslant q_{1}$: $b_{4}=2a_{1}\wedge a_{2}=a_{1}$.

$$x_{\rm er} = \frac{1}{2} \frac{-q_1 - q_2 + q_3 + q_4}{-q_1 + q_2 + q_3 - q_4}$$

И. Б. Смирнов (ПИЯФ)

Семинар ОФВЭ, 21.06.2021 20 / 35

Дифференциальные методы, 4 стрипа, литература

Асимметричная формула (повтор):

$$x_{\rm er} = \frac{a_1(q_1 - q_4) + a_2(q_2 - q_3)}{2a_1q_1 + (2(a_2 - a_1) - b_4)q_2 - 2a_2q_3 + b_4q_4} = \frac{a_1(q_1 - q_4) + a_2(q_2 - q_3)}{2a_1(q_1 - q_2) + 2a_2(q_2 - q_3) + b_4(q_4 - q_2)}$$

Не опубликована (или не найдена).

Симметричная формула (повтор):

$$x_{\rm er} = \frac{1}{2} \frac{-q_1 - q_2 + q_3 + q_4}{-q_1 + q_2 + q_3 - q_4}$$

Вывод не найден.

- Э. М. Спириденков, private communication, 1994.
- Использовалась в [G. N. Velichko, Preprint PNPI NP-31-1994 number 1973] и в еще двух работах Величко и Киселева (et al).

Допустим, что стрип 3 переполнен.

Тогда такие же рассуждения приводят к:

$$x_{\rm r} = \frac{a_1(q_1 - q_4)}{2a_1q_1 - (2a_1 + b_4)q_2 + b_4q_4} = \frac{a_1(q_1 - q_4)}{2a_1(q_1 - q_2) + b_4(q_4 - q_2)},$$

$$a_1 < 0, \ b_4 < -2a_1. \tag{3}$$

Это совпадает с полным асиметричным уравнением с $a_2 = 0$. (Но оптимальные параметры и систематические смещения будут другие). Симметричной формы нет.

Дифференциальные методы, 5 стрипов

Такой же анализ 5-стриповой группы приводит к асимметричной формуле:

$$x_{\rm er} = \frac{a_1 d_{15} + a_2 d_{24}}{2a_1 d_{12} + 2a_2 d_{23} + b_4 d_{43} + b_5 d_{52}}, \quad d_{ij} = q_i - q_j,$$

$$a_1 \leqslant 0, a_2 < 0, b_4 < -2a_2, b_5 \leqslant -2a_1 \tag{4}$$

Достаточные условия для зарядов для отличного от нуля знаменателя:

$$q_1 \leqslant q_5 \leqslant q_2 \leqslant q_4 \leqslant q_3 \wedge (q_2 \neq q_4 \vee q_3 \neq q_4)$$

И к симметричной:

$$x_{\rm er} = \frac{1}{2} \frac{a_1 d_{15} + a_2 d_{24}}{a_1 s_{15} + (a_2 - 2a_1) s_{24} + 2(a_1 - a_2) q_3}, \quad s_{ij} = q_i + q_j$$
$$a_1 \leqslant 0, a_2 < 0 , \qquad (5)$$

Литература:

- Выводы формул не найдены.
- Симметричная ф-ла при а₁ = -0.75 и а₂ = -1 приводится к формуле из [Э. М. Спириденков, Отчет по ICAR16, 2016].

Асимметричная ф-ла сводится к 3- и 4-стриповым при переполнении.

Дифференциальные методы, 6 стрипов

Такой же анализ 6-стриповой группы приводит к асимметричной формуле:

$$x_{\rm er} = \frac{a_1 d_{16} + a_2 d_{25} + a_3 d_{34}}{2a_1 d_{12} + 2a_2 d_{23} + 2a_3 d_{34} + b_5 d_{53} + b_6 d_{62}}$$
$$a_1 \leqslant 0, \ a_2 \leqslant 0, a_3 < 0,$$
$$b_5 < -2a_2, b_6 \leqslant -2a_1 \tag{6}$$

Достаточные условия для зарядов для отличного от нуля знаменателя:

$$q_1 \leqslant q_6 \leqslant q_2 \leqslant q_5 \leqslant q_3 \leqslant q_4 \wedge (q_3 \neq q_4 \vee q_3 \neq q_5).$$

Симметричная ф-ла:

$$x_{\rm er} = \frac{1}{2} \frac{a_1 d_{16} + a_2 d_{25} + (a_2 - a_1) d_{34}}{a_1 s_{16} + (a_2 - 2a_1) s_{25} + (a_1 - a_2) s_{34}}, \\ a_1 \leqslant 0, \ a_2 < a_1$$

При $a_1 = 0$ и $b_6 = 0$ ф-лы конвертируются в 4-стриповые. При переполнениях тоже конвертируются в ф-лы для меньшего числа стрипов. Упоминаний в литературе нет.

Дифференциальные методы, 7 стрипов

Асимметричная ф-ла для 7-и стрипов:

$$\begin{aligned} x_{\rm er} &= \frac{a_1 d_{17} + a_2 d_{26} + a_3 d_{35}}{2a_1 d_{12} + 2a_2 d_{23} + 2a_3 d_{34} + b_5 d_{54} + b_6 d_{63} + b_7 d_{72}} \\ &a_1 \leqslant 0, \ a_2 \leqslant 0, a_3 < 0, \\ &b_5 < -2a_3, b_6 \leqslant -2a_2, b_7 \leqslant -2a_1 \end{aligned}$$

Достаточные условия для зарядов для отличного от нуля знаменателя:

$$q_{1} \leqslant q_{7} \leqslant q_{2} \leqslant q_{6} \leqslant q_{3} \leqslant q_{5} \leqslant q_{4} \wedge (q_{3} \neq q_{5} \vee q_{4} \neq q_{5}), \tag{7}$$

Симметричная:

$$\begin{aligned} x_{\rm er} &= \frac{1}{2} \frac{a_1 d_{17} + a_2 d_{26} + a_3 d_{35}}{a_1 s_{17} + (a_2 - 2a_1) s_{26} + (2a_1 - 2a_2 + a_3) s_{35} + \\ &\quad + 2(-a_1 + a_2 - a_3) q_4, \\ a_1 &\leqslant 0, \ a_2 \leqslant a_1, \ a_3 < a_2 - a_1. \end{aligned}$$

Литература: нет.

Если в симметричной ф-ле слишком мало параметров, а в асиметричной ф-ле — слишком много, то можно испоользовать промежуточную, если зафиксировать некоторые *b_i* (один или два) на их значениях для симметричного случая, например:

$$b_7 = 2a_1, \ b_6 = -4a_1 + 2a_2$$
 (8)

и фитировать b₅ вместре с a₂ и a₃ (a₁ можно принять равным минус единице).

И. Б. Смирнов (ПИЯФ)

Семинар ОФВЭ, 21.06.2021 25 / 35

Фитирование параметров

Если известна истинная "true" координата x_t , то очевидный способ — фитирование параметров с целью минимизации среднеквадратичного отклонения:

$$S(x_{\rm e}) = \frac{1}{N_{\rm e}} \sum_{i=1}^{N_{\rm e}} (x_{{\rm e},i} - x_{{\rm t},i})^2$$
(9)

для N_e событий.

Эмпирически установлено, что почти одинаковые $S(x_e)$, в том числе относящиеся к разным локальным минимумам, а также и в пределах одного минимума, соответствуют существенно разным систематическим смещениям.

Оправдана минимизация обобщенной $S_{\beta}(x_{e})$:

$$S_{\beta}(\mathbf{x}_{\mathrm{e}}) = rac{1}{N_{\mathrm{e}}} \sum_{i=1}^{N_{\mathrm{e}}} (\mathbf{x}_{\mathrm{e},i} - \mathbf{x}_{\mathrm{t},i})^2 + \beta \mathbf{Y},$$

 β — малая константа и Y — оценка систематического смещения или искривления пространственного распределения.

Будем рассматривать искривления пространственного распределения.

Подробности — см. backup slides.

Корреция систематических смещений, выравнивание

Fourier series: K. Lau and J. Pyrlik, NIM A 366(1995)298.

Polynomial correction: R. Wurzinger, preprint IN2P3, IPNO-DRE 96-08.

Выравнивание:

Если известно истинное координатное распределение, допустим, оно однородное (константа):

Пусть: $x_{er} \in [x_{er,\min}, x_{er,\min} + 1[. x_{er,\min}: -0.5$ или 0.

Восстановление $x_{
m er,corr} = \int_{x_{
m er,min}}^{x_{
m er,min}+x_{
m er}} p(x) dx - x_{
m er,min},$

где p(x) — плотность вероятности $x_{\rm er}$ с симметризацией: $p(x_{\rm er}) = p(x_{\rm er,min} + 1 - x_{\rm er})$.

 $x_{\rm er,corr}$ распределен равномерно, потому что кумулятивная функция распределения должна быть равномерна.

Другой способ доказательства равномерности:

 $p(x_{er}) = p(x_{er,corr}) \frac{dx_{er,corr}}{dx_{er}}$, предполагая $p(x_{er,corr}) = 1$.

Первые найденные применения: J. Chiba, et al., NIM 206(1983)451 ("the empirical transformation") для центроида в CSC

и Е. Belau, et al., NIM 214(1983) 253 для отношений сигналов в кремниевых детекторах " η ".

Назовем этот метод выравниванием (smoothing).

Фитирование параметров с выравниванием

координатных распределений

Величину $x_{er,corr}$ не надо путать с x_t . Выравнивание не удаляет диф. нелинейность: $M(x_{e,corr} - x_t) \neq 0$. И наоборот,

удаление диф. нелинейности не влечет равномерность коор. распред., а также не минимизирует $S(x_{\rm e}).$

ЧТО ВАЖНЕЕ? Зависит от эксперимента...

Если $x_{\rm t}$ — не известно, остается только применять выравнивание.

Если $x_{\rm t}$ — известно (в Монте-Карло или в тестовых экспериментах с референсными детекторами большей точности), то, наверно, следует потребовать минимально возможное $S(x_{\rm e})$ и

- либо удаление диф. нелинейности (например, при помощи ряда Фурье),
- либо выравнивание коорд. распределений.

Примем для тестирования последний вариант. Алгоритм (очень упрощенно):

- 1. Задаемся начальными параметрами методов: α , p, t, $a_{P,l}$, a_i , b_i .
- 2. Моделировать $N_{\rm e}$ событий, для каждого вычислить $x_{\rm er}$, накапливать гистограмму $p(x_{\rm er})$.
- 3. Моделировать $N_{\rm e}$ событий, для каждого вычислять $x_{\rm er}$, затем

 $x_{
m er,corr} = \int_{x_{
m er,min}}^{x_{
m er,min}+x_{
m er}} p(x) dx - x_{
m er,min}$, и вычислять $S(x_{
m e}) = \frac{1}{N_{
m e}} \sum_{i=1}^{N_{
m e}} (x_{
m e,corr,i} - x_{
m t,i})^2$ (без Y). Для представления результатов накапливать гистограммы $p(x_{
m er})$ (для любопытства), $p(x_{
m er,corr})$, распределений $\sqrt{S(x_{
m e})}$ и среднего $x_{
m e,corr,i} - x_{
m t,i}$ как функции $x_{
m tr}$.

 Проверить, найден ли минимум S(x_e) с достаточной точностью. Если нет, но выбрать новые значения параметров и перейти к пункту (2).

И. Б. Смирнов (ПИЯФ)

Семинар ОФВЭ, 21.06.2021 28 / 35

Численное тестирование, функция распределения зарядов

Относительный заряд на стрипе [Gatti 1979, Mathieson 1984]

$$\begin{split} q_{\mathrm{t},i}(\mathrm{x}_{\mathrm{t}}) &= \frac{K_{\mathbf{1}}}{K_{\mathbf{2}}\sqrt{K_{\mathbf{3}}}} \Bigg(\arctan\left(\sqrt{K_{\mathbf{3}}} \tanh\left(K_{\mathbf{2}}\frac{\mathrm{x}_{\mathrm{s},i} - \mathrm{x}_{\mathrm{t}} + h_{\mathrm{s}}/2}{d}\right) \right) - \\ & \arctan\left(\sqrt{K_{\mathbf{3}}} \tanh\left(K_{\mathbf{2}}\frac{\mathrm{x}_{\mathrm{s},i} - \mathrm{x}_{\mathrm{t}} - h_{\mathrm{s}}/2}{d}\right) \right) \Bigg), \end{split}$$

где $h_{\rm s}$ — ширина стрипа, d — расстояние между анодом и катодом, $K_3 \approx 0.5$ (здесь = 0.5), $K_2 = \pi (1 - \sqrt{K_3}/2)/2$, $K_1 = K_2 \sqrt{K_3}/(4 \arctan(\sqrt{K_3}))$. Сумма $q_{{\rm t},i}$ (здесь) не флуктуирует, а всегда равна 1/2.

Плотность заряда (зеленая кривая), средний заряд на стрипах (красная линия) с шумом (зеленые прямоугольники), распределение Гаусса (штрихованная линия) для $h_{\rm s} = d$.

Плотность заряда (зеленая кривая), средний заряд на стрипах (красная линия) с шумом (зеленые прямоугольники), распределение Гаусса (штрихованная линия) для $h_{\rm s}=1.4d$.

Численное тестирование, пространственное распределение, $h_{\rm s}=d$

COGB: Center of gravity with bias; COGBP: Center of gravity with bias and power; COGWS: Center of gravity with weights and square splines;

ADF: Asymmetric Differential Formula; RADF: Restricted Asymmetric Differential Formula; ADFP: Asymmetric Differential Formula with Power;

MLE with 7 strips: Maximum Likelihood Estimation with charge distribution (integrated along strip width).

Численное тестирование, пространственное распределение, $h_{\rm s}=d$

Measured coordinate distributions for the uniform irradiation for all methods given in the previous figure.

COGB: Center of gravity with bias; COGBP: Center of gravity with bias and power; COGWS: Center of gravity with weights and square splines; ADF: Asymmetric Differential Formula; RADF: Asymmetric Restricted Differential Formula; ADFP: Asymmetric Differential Formula with Power; MLE with 7 strips: Maximum Likelihood Estimation. Численное тестирование, разрешение и смещение, $h_{\rm s} = 1.4d$

COGB: Center of gravity with bias; COGBP: Center of gravity with bias and power; COGWS: Center of gravity with weights and square splines; ADF: Asymmetric Differential Formula; RADF: Restricted Asymmetric Differential Formula; ADFP: Asymmetric Differential Formula with Power; MLE with 7 strips: Maximum Likelihood Estimation.

Численное тестирование, пространственное распределение, $h_{\rm s}=1.4d$

Measured coordinate distributions for the uniform irradiation for all methods given in the previous figure.

COGB: Center of gravity with bias; COGBP: Center of gravity with bias and power; COGWS: Center of gravity with weights and square splines; ADF: Asymmetric Differential Formula; RADF: Restricted Asymmetric Differential Formula; ADFP: Asymmetric Differential Formula with Power; MLE with 7 strips: Maximum Likelihood Estimation.

Свойства методов

notation of the method	simplicity	continuity	independence on	accuracy
			common pedestal	
COG	yes	no	no	bad
COGB	yes	yes	no	moderate
COGBP	yes	yes	no	good
COGWS	no	yes	yes	very good
COGBP with smoothing	yes	yes	no	very good
MLE	no	yes	yes	very good
ADF(RADF, SDF)	yes	yes	yes	moderate
ADFP	yes	yes	no	good
ADF(RADF, SDF) with smoothing	yes	yes	yes	very good

COG: Center of gravity; COGB: Center of gravity with bias; COGBP: Center of gravity with bias and power; COGWS: Center of gravity with weights and square splines; SDF: Symmetric Differential Formula; RADF: Restricted Asymmetric Differential Formula (partly symmetric); ADF: Asymmetric Differential Formula; ADFP: Asymmetric Differential Formula; MLE: Maximum Likelihood Estimation.

Выводы

- Разработан ряд новых дифференциальных методов и методов центра тяжести (в частности, обозначенных SDF, ADF, RADF, COGBP, COGWS).
- Несколько методов центра тяжести и дифференциальных методов обеспечивают разрешение близкое к предельно достижимому по методу максимального правдоподобия.
- В целом, методы центра тяжести не хуже или лучше дифференциальных методов.
- 4. Все методы имеют совершенно разные характеристики. Поэтому в некоторых случаях (например, для встроенных процессоров или для случаев, когда флуктуации общего пьедестала существуют и не могут быть скорректированы) какой-либо метод из категории дифференциальных может оказаться столь же или более полезным, чем методы центра тяжести.

Спасибо за внимание!

Backup slides: Фитирование параметров, определение Y

Пусть $n_{{
m h},i}$ — число событий в *i*-м бине гистограммы переменной $x_{{
m er}}$, имеющей $N_{{
m h}}$ бинов.

Примечание: для подавления микроскопических флуклуаций *Y* события при заполнении гистограммы должны размываться как очень узкие колоколообразные распределения единичной площади.

Верхний значок (s) будет обозначать симметризованную гистограмму $p(x_{\rm er})$: $n_{{\rm h},i}^{({\rm s})}=(n_{{\rm h},i}+n_{{\rm h},N_{\rm h}+1-i})/2$, так что $n_{{\rm h},i}^{({\rm s})}=n_{{\rm h},N_{\rm h}+1-i}^{({\rm s})}$. У должна быть (почти) независима от $N_{\rm e},N_{\rm h}$ и от статистического разрешения. Пусть $x_{\rm t}$ распределена равномерно, и стрипы и их электроника — идентичны. Тогда Y и реальное среднеквадратичное отклонение $\sigma(n_{\rm h}^{({\rm s})})$ запишем как

$$Y = \frac{\left(\max\{0, \sigma(n_{\rm h}^{({\rm s})}) - \mathcal{M}(\sigma(n_{\rm h}^{({\rm s})}))\}\right)^2}{\mathcal{M}^2(\sigma(n_{\rm h}^{({\rm s})}))}, \quad \sigma(n_{\rm h}^{({\rm s})}) = \sqrt{\frac{1}{\mathcal{N}_{\rm h}}\sum_{i=1}^{\mathcal{N}_{\rm h}} \left(n_{{\rm h},i}^{({\rm s})} - \frac{\mathcal{N}_{\rm e}}{\mathcal{N}_{\rm h}}\right)^2},$$

и его мат. ожидание, если присутствуют только стат. флуктуации

$$M(\sigma(n_{\rm h}^{\rm (s)})) = \sqrt{\frac{N_{\rm e}}{2N_{\rm h}}} \quad ({\rm for \ even} \ N_{\rm h}), \quad M(\sigma(n_{\rm h}^{\rm (s)})) = \sqrt{\frac{N_{\rm e}(1+N_{\rm h})}{2N_{\rm h}^2}} \quad ({\rm for \ odd} \ N_{\rm h})$$

Backup slides: Численное тестирование, зависимость от β (1)

 $S_{\beta}(x_{\rm e})$ как функция от α и β для метода COGB.

Ошибка как функция $x_{\rm tr}$. Фитирование с $\beta=0$ дает лучшую погрешность, но худшую дифференциальную нелинейность - гребень в середине стрипов.

Backup slides: Численное тестирование, зависимость от β (2)

 $S_{\beta}(x_{\mathrm{e}})$ как функция от lpha для метода COGB для разных распределений.

 $S_{\beta}(x_{\rm e})$ как функция от α и β для метода COGB (розовая кривая - повтор из рис. выше). При широких стрипах точки с нулевой нелинейностью исчезают.