Вклад ультра-периферических столкновений в дифракционное протон-ядерное рассеяние на БАК

В. А. Гузей

Петербургский Институт Ядерной Физики, НИЦ "Курчатовский Институт"

- По результатам препринта V. Guzey, M. Strikman, M. Zhalov, UPC contribution to forward rapidity gap distribution in pPb collisions at the LHC, arXiv:2205.03861 [hep-ph], май 2022, послано в Phys. Rev. C.
- Как реакция на недавний семинар ОФВЭ, Д. Соснова, Монте-Карло генераторы событий для дифракционных адронных и ядерных соударений при высоких энергиях: Pythia, EPOS-LHC и QGSJET-II, 25.01.2022

План семинара

- Дифракция адронов при высоких энергиях
- Дифракционное протон-ядерное рассеяние на БАК: проблема с описанием данных CMS
- Вклад сильного взаимодействия и ультра-периферический вклад в протон-ядерную дифракционную диссоциацию: общее рассмотрение
- Обобщение на распределение по щели в быстроте во впередовой области $\Delta \eta^{F}$ (forward rapidity gap) в кинематике CMS.

Дифракция адронов при высоких энергиях

- В рассеянии адронов (pp, pA, AA) при высоких энергиях существует важный класс событий, характеризующимися отсутствием адронной активности в широкой области быстрот = Large Rapidity Gap (LRG). Быстрота $\eta=1 / 2 \ln \left[\left(E+p_{z}\right) /\left(E-p_{z}\right)\right]$.
- Такие процессы называются дифракционными по аналогии с дифракцией света на мишени, т.к. имеют характерную зависимость от переданного импульса (t) с минимумами и максимами.
- Примеры дифракционных процессов: (b) упругое рассеяние, (c) однократная диссоциация, (d) двукратная диссоциация.

Khoze, Ryskin, Tasevsky, High Energy Soft QCD and Diffraction, PDG, Prog. Theor. Exp. Phys. 2020 (2021) 083C01

Зачем изучать дифракцию?

- Практический аспект: дифракционные события составляют 25-30\% полного неупругого рр сечения при энергиях БАК \rightarrow необходимо для хорошего описания дополнительных неупругих рр столкновений (pile-up) и мониторинга светимости.
- Теоретический аспект: дифракция является богатой тестовой площадкой динамики мягких (теория Грибова-Редже, модель ГудаВолкера) и жестких (природа Померона в КХД, насыщение глюооной плотности при малых х, кварк-глюооная структура протонов и ядер в КХД) взаимодействий.
- Феноменологический аспект: проверка Монте-Карло генераторов, использующие эти модели \rightarrow ядра играют роль фильтра, представляющим доп. возможность дифференцировать между разл. механизмами дифракции по сравнению с протоном.
- Синергетический аспект: дифракция на ядрах играет роль в физике космических лучей (моделирование атмосферных ливней).

Дифракционное протон-ядерное рассеяние на БАК: проблема с описанием данных CMS

- Первое измерение дифракции в протон-ядерном (pPb) рассеянии на БАК при 8.16 ТэВ, смs coll., Cms-PAS-HIN-18-019.
- Результаты в виде распределения по щели в быстроте во впередовой области $\Delta \eta^{F}$. CMS определяет ее как расстояние от края области, перекрываемой центральным детектором $|\eta|<3$, до первого непустого бина в адронном форвардном калориметре (HF).
- В зависимости от того, какой калориметр срабатывает, различают 2 топологии: Померон-ядерная (слева) и Померон-протонная (справа).

Дифракционное протон-ядерное рассеяние на БАК: проблема с описанием данных CMS

- Монте-Карло генераторы (EPOS-LHC, HIJING, QGSJET II) недооценивают данные в 2 раза в PPb топологии и в 5 раз в Рр топологии \rightarrow расхождение может быть объяснено ультра-периферическим вкладом, имитирующим дифракционный \rightarrow мы это отметили еще в 2006 г., Guzey, Strikman, PLB 633 (2006) 245; PLB 663 (2008) 456

- В случае протонной мишени описание распределения по $\Delta \eta^{F}$ достаточно ХОрошее, Aad et al. [ATLAS], EPJC 72 (2012) 1926; Khachatryan et al. [CMS], PRD 92, no. 1 (2015) 012003

Вклад сильных взаимодействий в протонядерную дифракционную диссоциацию

- Явление дифракционной диссоциации (ДД) в протон-ядерном рассеянии при высоких энергиях $\mathrm{p}+\mathrm{A} \rightarrow \mathrm{X}+\mathrm{A}$ является классическим примером составной природы адронов.
- Комбинируя метод Грибова-Глаубера для адрон-ядерного рассеяния с моделью Гуда-Волкера для собственных состояний матрицы рассеяния \rightarrow сечение когерентной ДД на ядрах, Good, Walker, PR 120 (1960) 1857; Frankfurt, Miller, Strikman, PRL 71 (1993) 2859; Blattel, Baym, Frankfurt, Heiselberg, Strikman, PRD 47 (1993) 2761

$$
\sigma_{p A}^{\operatorname{diff}}(s)=\int d^{2} \vec{b}\left[\int d \sigma P_{p}(\sigma)\left|\Gamma_{A}(\vec{b})\right|^{2}-\left|\int d \sigma P_{p}(\sigma) \Gamma_{A}(\vec{b})\right|^{2}\right]
$$

- $\Gamma_{A}(b)=$ амплитуда рассеяния на ядре в представлении прицельного параметра $\mathrm{b} \rightarrow$ учитывает сильный эффект ядерных экранировок (упругих и неупругих)

$$
\Gamma_{A}(\vec{b})=1-e^{-\frac{\sigma}{2} T_{A}(\vec{b})}
$$

- $\mathrm{T}_{\mathrm{A}}(\mathrm{b})=$ ядерная оптическая плотность

$$
T_{A}(\vec{b})=\int d z \rho_{A}(\vec{r})
$$

Вклад сильных взаимодействий в протонядерную дифракционную диссоциацию (2)

- $\mathrm{P}_{\mathrm{p}}(\sigma)=$ вероятность протону находиться в конфигурации, взаимодействующей с нуклонами ядра с сечением б.
- Непертурбативное распределение \rightarrow требует моделирования, Frankfurt, Guzey,
Stasto, Strikman, arXiv:2203.12289 (review submitted to ROPP)
- Однако в случае ДД на ядрах форма $P_{p}(\sigma)$ не важна, т.к. можно разложить в ряд Тэйлора вблизи $\sigma_{p p}^{\text {tot }}(s)=\langle\sigma\rangle \equiv \int d \sigma P_{p}(\sigma) \sigma$

$$
\sigma_{p A}^{\mathrm{diff}}(s)=\frac{\omega_{\sigma}(s)\langle\sigma\rangle^{2}}{4} \int d^{2} \vec{b}\left(T_{A}(b)\right)^{2} e^{-\langle\sigma\rangle T_{A}(b)}
$$

- $\omega_{\sigma}(\mathrm{s})=$ характеризует дисперсию $\mathrm{P}_{\mathrm{p}}(\sigma) \rightarrow$ определяется из данных по ДД на протоне $p+p \rightarrow X+p$:

$$
\omega_{\sigma}(s)=0.092 \pm 0.015
$$

Ультра-периферический вклад в протонядерную дифракционную диссоциацию

- Конкурирующим механизмом данной реакции с тем же самым конечным состоянием является ультра-периферический вклад $\mathrm{p}+\mathrm{A} \rightarrow \mathrm{p}+\gamma+\mathrm{A} \rightarrow \mathrm{X}+\mathrm{A}$
- В приближении эквивалентных фотонов тяжелые ионы служат источником квази-реальных фотонов \rightarrow

$$
\sigma_{p A}^{\mathrm{e} . \mathrm{m} .}(s)=\int_{\omega_{\min }}^{\omega_{\max }} \frac{d \omega}{\omega} N_{\gamma / A}(\omega) \sigma_{\gamma p}^{\mathrm{tot}}\left(s_{\gamma p}\right)
$$

- $\mathrm{N}_{\gamma / \mathrm{A}}(\omega)=$ поток фотонов энергии $\omega \quad N_{\gamma / A}(\omega)=$

$$
\frac{2 Z^{2} \alpha_{\text {e.m. }}}{\pi}\left(\xi K_{0}(\xi) K_{1}(\xi)-\frac{\xi^{2}}{2}\left(K_{1}^{2}(\xi)-K_{0}^{2}(\xi)\right)\right)
$$

- $\sigma_{\gamma \mathrm{p}}(\mathrm{s})=$ полное фотон-протонное сечение $\gamma+\mathrm{p} \rightarrow \mathrm{X}$

$$
\sigma_{\gamma p}^{\mathrm{tot}}(s) / \mathrm{mb}=0.0677 s_{\gamma p}^{0.0808}+0.129 s_{\gamma p}^{-0.4525}
$$

- Минимальная и максимальная энергии фотонов:

$$
\omega_{\min }=\left(M_{\Delta}^{2}-m_{p}^{2}\right) /\left(4 m_{p} \gamma_{L}(p)\right) \quad \dot{\omega_{\max }}=\gamma_{L}(A) / R_{A}
$$

Сравнение сильного и ультра-периф. вкладов

- В кинематике БАК, ультра-периферический вклад доминирует в сечении когерентной дифракционной диссоциации в протон-ядерном рассеянии для тяжелых ядер.

$$
\begin{aligned}
\sigma_{p A}^{\text {diff }}(s) & =7.4 \pm 1.2 \mathrm{mb} \\
\sigma_{p A}^{\text {e.m. }}(s) & =450 \mathrm{mb}
\end{aligned}
$$

- Это обуславливается усилением э.м. вклада за счет большого потока фотонов ~ Z² с одновременным подавлением сильного вклада за счет большой ядерной экранировки и малой ДД на протоне $\sim \omega_{\sigma}(\mathrm{s})$.
- Для легких ядер оба вклада сравнимы:

$$
\begin{aligned}
\sigma_{p O}^{\text {diff }}(s) & =3.1 \pm 0.52 \mathrm{mb} \\
\sigma_{p O}^{\text {e.m. }}(s) & =5.0 \mathrm{mb}
\end{aligned}
$$

Обобщение на случай распределения по $\Delta \eta^{\mathrm{F}}$:

вклад сильных взаимодействий

- Связь между дисперсией $\mathrm{P}_{\mathrm{p}}(\sigma)$ и сечением ДД на протоне $\mathrm{p}+\mathrm{p} \rightarrow X+\mathrm{p}$:

$$
\frac{d \sigma_{p p}^{\mathrm{diff}}(t=0)}{d t}=\frac{1}{16 \pi}\left(\left\langle\sigma^{2}\right\rangle-\langle\sigma\rangle^{2}\right)=\frac{\omega_{\sigma}(s)\langle\sigma\rangle^{2}}{16 \pi}
$$

- Сечение ДД на ядре: $\quad \sigma_{p A}^{\operatorname{diff}}(s)=\frac{d \sigma_{p p}^{\operatorname{diff}}(t=0)}{d t} 4 \pi \int d^{2} \vec{b}\left(T_{A}(b)\right)^{2} e^{-\langle\sigma\rangle T_{A}(b)}$
- Экспоненциальная зависимость от t : $\mathrm{d} \mathrm{\sigma}_{\mathrm{pp}}$ diff $^{\text {d }} \mathrm{dt}=\mathrm{d} \sigma_{\mathrm{pp}}{ }^{\text {diff }} / \mathrm{dt}(\mathrm{t}=0) \mathrm{e}-\mathrm{B}(\mathrm{s})|\mathrm{t}|$
- Сечение дД на ядре:

$$
\begin{aligned}
\sigma_{p A}^{\mathrm{diff}}(s) & =\sigma_{p p}^{\mathrm{diff}}(s) 4 \pi B(s) \int d^{2} \vec{b}\left(T_{A}(b)\right)^{2} e^{-\langle\sigma\rangle T_{A}(b)} \\
& =2.4 \sigma_{p p}^{\mathrm{diff}}(s) .
\end{aligned}
$$

- В диффференциальной форме: $\quad \frac{d \sigma_{p A}^{\mathrm{diff}}}{d \Delta \eta^{F}}=2.4 \frac{d \sigma_{p p}^{\mathrm{diff}}}{d \Delta \eta^{F}}$
- Используя данные ATLAS, Aad et al. [ATLAS], EPJC 72 (2012) 1926:

$$
\frac{d \sigma_{p A}^{\text {diff }}}{d \Delta \eta^{F}} \approx 2.4 \mathrm{mb}
$$

Определение $\Delta \eta^{F}$

- Масса Мх связана с щелью по быстроте между системой X и упругорассеянным ядром:

$$
\begin{aligned}
\Delta \eta & =-\ln \xi_{X} \\
\xi_{X} & =M_{X}^{2} / s
\end{aligned}
$$

- В Померон-протонной топологии $\Delta \eta^{F}$ определено как расстояние между $\eta=-3$ и последним непустым бином. Так как упруго-рассеянное ядро отвечает

$$
\dot{\eta}_{A}=-(1 / 2) \ln \left(4 E_{A}^{2} / m_{p}^{2}\right)=\ln \left(2 E_{A} / m_{p}\right)=-8 . \overline{6}
$$

- Щель в быстроте во впередовой области $\Delta \eta^{F}$ в кинематике CMS:

$$
\Delta \eta^{F}=\Delta \eta-(8.6-3)=\Delta \eta-5.6
$$

Обобщение на случай распределения по $\Delta \eta^{F}$:

ультра-периферический вклад

- Энергия фотонов однозначно связана с массой рожденного дифракционного состояния: $\quad \omega=\left(M_{X}^{2}-m_{p}^{2}\right) /\left(4 m_{p} \gamma_{L}(p)\right) \approx M_{X}^{2} /\left(4 m_{p} \gamma_{L}(p)\right)$
- Вспоминая связь $\mathrm{Mx}_{\mathrm{x}} \Delta \eta^{\mathrm{F}}: \quad \frac{d \omega}{\omega}=d \ln M_{X}^{2}=d \Delta \eta^{F}$
- Ультра-периферический вклад как функция $\Delta \eta \eta^{F}$:

$$
\frac{d \sigma_{p A}^{\mathrm{e} . \mathrm{m} .}}{d \Delta \eta^{F}}=N_{\gamma / A}\left(\omega\left(\Delta \eta^{F}\right)\right) \sigma_{\gamma p}^{\mathrm{tot}}\left(s_{\gamma p}\right)
$$

$\Delta \eta^{F}$	$d \sigma_{p A}^{\text {e.m. }} / d \Delta \eta^{F}, \mathrm{mb}$
1	13.9
2	17.8
3	21.1
4	23.9
5	26.3

Результат для распределения по $\Delta \eta^{F}$

- Наша полу-количественная оценка объясняет величину и поведение данных CMS.
- В частности, ультра-периферический вклад доминирует и слабо растет с $\Delta \eta^{F}$ за счет роста фотонного потока.
- Вклад сильных взаимодействий мал и не зависит от $\Delta \eta^{F}$

Заключение

- Ультра-периферический вклад доминирует в сечении когерентной дифракционной диссоциации протонов на тяжелых ядрах в кинематике БАК.
- Учет этого механизма позволяет полу-количественно объяснить данные CMS по распределение по щели в быстроте во впередовой области $\Delta \eta^{F}$ в Померон-протонной кинематике.
- Это указывает на необходимость учета ультра-периферического вклада в Монте-Карло генераторах.
- Сильный и ультра-периферические вклады сравнимы в случае легких ядер (кислород, О). Т.к. ультра-периферический вклад под теор. контролем \rightarrow возможность измерить дифракцию на ядрах.

