Измерение зарядового радиуса протона. Эксперименты PRES и AMBER. Технические особенности и статус

> М. Е. Взнуздаев (ЛКСТ ОФВЭ) Семинар ОФВЭ 15.03.2022

"Загадка" радиуса протона. Коллаборация PREMA

A. Antognini *et al., Science 399 (2013) 417.*

СОДАТА: 0.8751(61) фм

Методы измерения зарядового радиуса R_р

- Спектроскопия водорода ("нормальный" водород, мюонный водород)
- Лептон-протонное упругое рассеяние (ер или μπ)

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon}G_M^{p\,2}(Q^2)\right)$$

Результаты измерений зарядового радиуса R_р в различных экспериментах

Эксперимент A1 (MAMI, Mainz)

Эксперимент PRad (Jefferson lab)

Струйная газовая мишень

PbWO₄ HyCal калориметр

ХҮ-GEM детектор

Промежуточный результат: Rp = 0.831±0.007(stat.)±0.01(syst.) fm

Эксперимент ProRad, PRAE (Orsay)

Cryogenic jet target, 280 BGO crystal detectors,

Electron scattering at $Q^2 = 10^{-5}$ - $3x10^{-4}$ GeV2, detectors made of scintillating fiber planes and BGO crystals.

Эксперимент MUSE (PSI)

... The PSI πM1 beam line provides a mixed muon / pion / electron beam with a ≈50 MHz time structure

The three beam momenta selected, pin \approx 115 MeV/c, 153 MeV/c, and 210 MeV/c

The MUSE approach to resolving the Proton Radius Puzzle is to measure simultaneously elastic $\mu \pm p$ scattering and e $\pm p$ scattering ...

R. Gilman, E.J. Downie, G. Ronet et al.

Studying the Proton "Radius" Puzzle with µp Elastic Scattering. arXiv:1303.2160

Эксперимент ULQ₂ (Ultra-Low Q₂), Research Center for Electron Photon Science Tohoku University

GE(Q2) measurements at $0.0003 \le Q2 \le 0.008$ (GeV/c)2

Все перечисленные эксперименты не регистрируют протон отдачи!

А. А. Воробьевым предложена методика эксперимента с регистрацией протона отдачи, основанная на использовании активной мишени

Эта схема будет применена как в установке PRES, так и AMBER Центральные детекторы экспериментов PRES и AMBER представляют собой развитие концепции **"активной мишени"**. Концепция была успешно применена в семействе экспериментов, осуществленных под руководством **А. А. Воробьева**

ИКАР

A.A. Vorobyov, G.A. Korolev, V.A. Schegelsky, G.Ye. Solyakin, G.L. Sokolov, Yu.K. Zalite, A. Method for studies of small-angle hadronproton elastic scattering in the coulomb interference region, Nuclear Instruments and Methods, 119, 1974, pp 509-519,

Исследования μ-катализа

Эксперимент MuCaP (Muon Capture on the Proton)

Andreev V.A. et al. (MuCap Coll.) Measurement of Muon Capture on the Proton to 1 % Precision and Determination of the Pseudoscalar Coupling gp // Phys. Rev. Lett. 2013. V. 110. P. 022504.

Эксперимент MuSun (Muon Capture on the Deutron)

Ivshin K.A. et al. (MuSun Coll.) Cryogenic Time-Projection Chamber for Measurement of Muon Capture Rate on the Deuteron // Book of Abstracts of the LXIV Int. Conf. NUCLEUS 2014 (Fundamental Problems of Nuclear Physics, Atomic Power Engineering and Nuclear Technologies), Minsk, Belarus, July 2014. P. 218.

Прототип ACTAF2 (GSI)

Абсолютные измерения сечения еР взаимодействия с точностью 0,2%

Точность основана на следующих параметрах измерительной установки:

- Измерение стабильности (интенсивности) пучка с точностью 0,1 %;
- Абсолютная точность построения и измерения геометрии мишени с точностью 100 мкм;
- Обеспечение стабильности и знание с точностью 0,01 % скорости дрейфа, температуры и давления рабочего газа
- Калибровка Q² с точностью 0,1 %
- Эффективность, близкая к 100 %

Схема установки PRES

Modules:

BPM - Beam Position Monitor

BIM - Beam Intencity Monitor

SC - Scintillation Counter

FT - Forward Tracker

TPC - Time Projection Chamber

Measured quantities:

Recoil energy T_R Recoil angle Θ_R Scattering angle Θ_e Vertex coordinate Z Пучок: E=750 МэВ,

МАМІ, Майнц

Центральный детектор PRES

Центральный детектор PRES

Изготовление газового объема

Атмосфера

Газовый объем. Прочностной расчет

Газовый объем. Гидравлические испытания

Моделирование электростатического поля

ТРС. Конструкция

ТРС. Общий вид

Высоковольтный ввод

ТРС. Тестовая сборка

ТРС. Кессон (водородный объем)

Прототип пропорциональной камеры

Forward Tracker

- 8 однотипных станций (камер) с катодным съемом
- Чувствительная область камеры восьмиугольник с просветом 600 мм
 - Зазор катод-анод 3 мм
 - Съем с точного и неточного катода
 - Анод 30 мкм проволоки с шагом 3 мм
 - Катоды: 50 мкм проволоки с шагом 3 мм, объединены в стрипы по 5 проволок

Станция РС **P** ۲ 10 0 Ģ ۲

Деформационные расчеты для FT

-300

-200

12 модулей, 2304 канала

4 ввода высокого напряжения (до 15 кВ)

Тестовый сеанс

Конфигурация: три станции в частичной сборке рабочего объема,

2 сцинтилляционных счетчика, газовая система для работы в диапазоне давлений 1-20 бар (97% Ar + 3% CH₄), HV до 6 кВ, 6 модулей (288 каналов) электроники, тестовый источник ⁵⁵Fe

Газовая система

Несущая система детектора PRES

Размещение центрального детектора

Размещение установки в зале MAMI A2

Сборка сцинтилляционных счетчиков

Детектор положения пучка

Устройство разработано и изготовлено под руководством **В. Т. Грачева**

Монитор интенсивности пучка (Beam Intensity Monitor)

AMBER (Apparatus for Meson and Baryon Experimental research)

2021 COMPASS spectrometer setup

Beam properties at the target, location, momentum 100 Gev/c

Вариант конструкции AMBER TPC

cathode–grid distance (drift zone)	400.0 mm
grid–anode distance	10.0 mm
grid wire diameter	0.1 mm
grid wire spacing	1.0 mm
grid transparency	1.8%
anode outer diameter	600 mm
hydrogen pressure	20 bar and 4 bar
electric field in drift space E/P	0.116 kV/(cm bar)
electric field in grid-anode zone E/P	0.340 kV/(cm bar)
electron drift velocity in the drift zone	$0.41 \text{ cm}/\mu\text{s}$
electron drift velocity in the grid-anode space	$0.70 \mathrm{cm}/\mu\mathrm{s}$

Вариант конструкции корпуса AMBER TPC

Благодарю за внимание!