Экспериментальный поиск новых типов межнуклонных взаимодействий, выходящих за рамки Стандартной Модели, с помощью нейтронного рассеяния

Старший лаборант ЛРГС ОНИ ОНФ <u>Шапиро Дмитрий Дмитриевич</u> Научный руководитель д.ф.-м.н., профессор <u>Воронин Владимир Владимирович</u>

План доклада

- Мотивация для поиска новых сил
- Методы поиска новых сил
- Порошковая дифракция нейтронов
 - Рассеяние нейтрона на порошке
 - Эксперимент на дифрактометре D20
 - Обработка данных и ограничения на константу связи
 - Обработка калибровочных данных
- Прохождение нейтрона в кристалле без центра симметрии
 - Теория
 - Эксперимент на реакторе ВВР-М
 - Ограничения на константу связи
- Заключение

Трудности Стандартной Модели

- Темная материя
- Темная энергия
- Сильная СР-проблема
- Барионная асимметрия Вселенной
- Проблема иерархии

Аномальный магнитный момент мюона

- $\mu = g \frac{q}{2mc} S$, μ магнитный момент, S спин, g = 2(1 + a) g-фактор
 - Теория Дирака *g* = 2
 - Поправки от э/м взаимодействия
 - Поправки от массивных частиц
- Расчет в рамках СМ* (2020): $a_{\mu} \equiv (g_{\mu} 2)/2 = 116\,591\,810(43) \times 10^{-11}$
- Эксперимент BNL E821** (2006): *a*_μ = 116 592 089 (63) × 10⁻¹¹ (3,7σ) [2]
- Эксперимент FermiLab Muon g-2*** (2021): a_μ = 116 592 040 (54) × 10⁻¹¹ (3,3σ) [3]
- Оба эксперимента вместе***:

 $a_{\mu} = 116\,592\,061\,(41) \times 10^{-11}\,(4,2\sigma)$

Аномальный магнитный момент мюона

- µ прецессирует в магнитном поле
 - $g_{\mu} = 2 \rightarrow$ один оборот спина за один оборот μ в кольце
 - $g_{\mu} > 2
 ightarrow$ вращение спина
- Частота вращения $\sim a_{\mu}$
- При распаде мюона рождаются
 e⁻(e⁺)
- Распределение вылетающих *e*⁻(*e*⁺) по энергии и углам зависит от ориентации спина мюонов

Установка Muon g-2**

Зарядовый радиус протона

Частицы за рамками СМ ightarrow Нарушение лептонной универсальности ightarrow Расхождение r_p

**J.-P. Karr & D. Marchand, Nature 575, 61 (2019)

*nplus1.ru/material/2017/07/28/protonpuzzle

Ве и Не аномалии

- 2016: нарушение распределения углов вылета электрон-позитронной пары в распаде возбужденного ⁸Be (mc² = 16,70 (61) МэВ)
- 2019: то же на новой установке ($mc^2 = 17,01$ (26)МэВ)

Частицы за рамками СМ (Х17) \rightarrow Распад частицы на $e^-/e^+ \rightarrow$ Аномалия в количестве e^-/e^+

 a^{μ}

Классификация взаимодействий

- Взаимодействие обмен бозоном
- Вершина константа связи
- Бесспиновый бозон:

 $g_S g_P$

 $\circ g_V^2$

 $g_V g_A$

- ← Скаляр-скалярное
- Скаляр-псевдоскалярное
- Псевдоскаляр-псевдоскалярное
- Массивный бозон со спином 1:

Спин-зависимые

Спин-зависимые

- ← Вектор-векторное
- ← Вектор-аксиальное
- ← Аксиально-аксиальное

Рассеяние двух фермионов за счёт обмена бозоном с передачей 4-импульса $q^{\mu*}$

2

Методы поиска

- Методы поиска зависят от
 - Типа взаимодействия
 - Радиуса взаимодействия
- Скаляр-скалярное взаимодействие: $\circ \lambda > 10^{-6}$ м – крутильные весы $\circ \lambda = 10^{-8} \div 10^{-6}$ м – силы Казимира $\circ \lambda = 10^{-13} \div 10^{-8}$ м – нейтроны $\circ \lambda = 10^{-15} \div 10^{-13}$ м – спектроскопия $\circ \lambda < 10^{-15}$ м – ускоритель

«Of course, such tests cannot provide evidence that α exists; they can only set upper limits» [arXiv:1408.3588]

- $I_g \sim |F_g|^2$
- $F_g = \sum_i a_i(\boldsymbol{g}) e^{-i\boldsymbol{g}\boldsymbol{r}_i}$
- $\sum_{i}^{J} e^{-i\boldsymbol{g}\boldsymbol{r}_{i}} = \sum_{i}^{J} e^{-2\pi i(hx_{i}+ky_{i}+lz_{i})}$

x	У	Ζ
1/8	1/8	1/8
3/8	3/8	3/8
7/8	7/8	3/8
7/8	3/8	7/8
3/8	7/8	7/8
1/8	5/8	5/8
5/8	5/8	1/8
5/8	1/8	5/8

Схема эксперимента по порошковой дифракции на установке D20 (ILL, Гренобль, Франция)*

Класс	Амплитуда рассеяния	Причина возникновения	Порядок величины, фм	
	$a_N(\boldsymbol{g})$	Сильное взаимодействие	1	
I	$a_{\mu_A}(\boldsymbol{g})$	Взаимодействие с магнитным моментом атома	1	
	$a_{\mu_N}(\boldsymbol{g})$	Взаимодействие с магнитным моментом ядра	10 ⁻³	
-	$a_{S}(\boldsymbol{g})$	Спин-орбитальное взаимодействие (Швингер)	10 ⁻³	$-a_M(\mathbf{g})$
	$a_F(\boldsymbol{g})$	Взаимодействие с зарядовым распределением атома (Фолди)	10 ⁻³	
	$a_E(\boldsymbol{g})$	Взаимодействие с электростатическим потенциалом атома	10 ⁻³	
	$a_P(\boldsymbol{g})$	Взаимодействие за счет электрической поляризуемости нейтрона	10 ⁻³	
	$a_{EDM}(\boldsymbol{g})$	Взаимодействие с ЭДМ нейтрона	< 10 ⁻⁸	
	$a_Q(\boldsymbol{g})$	Взаимодействие с электрическим зарядом нейтрона	< 10 ⁻¹⁰	
	$a_W(\boldsymbol{g})$	Слабое взаимодействие	10 ⁻³⁴	

- $a(\boldsymbol{g}) = a_N(\boldsymbol{g}) + a_P(\boldsymbol{g}) + a_M(\boldsymbol{g}) + a_E(\boldsymbol{g})$ $\circ a_N(\boldsymbol{g}) = -b_N$ $\circ a_P(\boldsymbol{g}) = -b_P$ $\circ a_M(\boldsymbol{g}) \sim \boldsymbol{\mu}_n \cdot \boldsymbol{B}_A + b_F(\boldsymbol{\mu}_n \cdot \boldsymbol{B}_N + Z(1 - f(\boldsymbol{q})))$ $\circ a_E(\boldsymbol{g}) = b_E Z(1 - f(\boldsymbol{q}))$
- $a(\boldsymbol{g}) = -b_N b_P + \boldsymbol{\mu}_n \cdot \boldsymbol{B}_A + b_F \boldsymbol{\mu}_n \cdot \boldsymbol{B}_N + b_{ne} Z (1 f(\boldsymbol{q}))$ $\circ b_{ne} = b_F + b_E$

- В случае кремния
 - о *b_N* ≈ 4,2 фм

$$\circ$$
 b_P ≈ −2 · 10⁻³ фм

 $o b_{ne}Z(1-f(\mathbf{q})) \sim 10^{-3} \, \phi$ м

•
$$I_{g} \sim m_{g} \cdot L_{g} \cdot y_{g} \cdot A_{g} \cdot e^{-2W_{g}} \cdot p(2\theta) \cdot |F_{q}|^{2}$$

$$\stackrel{(I_{g})}{=} m_{g} \cdot \mu_{d} \text{exc nobsop memocru}$$

$$\stackrel{(I_{g})}{=} L_{g} \cdot \phi_{a} \text{krop } \Lambda_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} \psi_{g} \cdot \kappa_{o} \phi \phi \mu_{u} \mu \text{ent } \sigma_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} \mu_{g}^{o} \cdot \kappa_{o} \phi \phi \mu_{u} \mu \text{ent } \sigma_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} e^{-2W_{g}} \cdot \phi_{a} \text{krop } \Lambda_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} e^{-2W_{g}} \cdot \phi_{a} \text{krop } \Lambda_{e} \text{for } \sigma_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} e^{-2W_{g}} \cdot \phi_{a} \text{krop } \Lambda_{e} \text{for } \sigma_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} e^{-2W_{g}} \cdot \phi_{a} \text{krop } \Lambda_{e} \text{for } \sigma_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} e^{-2W_{g}} \cdot \phi_{a} \text{krop } \Lambda_{e} \text{for } \sigma_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} e^{-2W_{g}} \cdot \phi_{a} \text{krop } \Lambda_{e} \text{for } \sigma_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} e^{-2W_{g}} \cdot \phi_{a} \text{krop } \Lambda_{e} \text{for } \sigma_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} e^{-2W_{g}} \cdot \phi_{a} \text{krop } \Lambda_{e} \text{for } \sigma_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} e^{-2W_{g}} \cdot \phi_{a} \text{krop } \Lambda_{e} \text{for } \sigma_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} e^{-2W_{g}} \cdot \phi_{a} \text{krop } \Lambda_{e} \text{for } \sigma_{o} \text{penual}$$

$$\stackrel{(I_{g})}{=} e^{-2W_{g}} \cdot \phi_{a} \text{krop } \Lambda_{e} \text{for } \sigma_{o} \text{for } \sigma_{o}$$

*pd.chem.ucl.ac.uk/pdnn/diff2/kinemat2.htm

- Индекс повторяемости m_g
 - $\circ (111) = (\overline{1}11) = (1\overline{1}1) = (11\overline{1}) = (\overline{1}\overline{1}1) = (1\overline{1}\overline{1}) = (\overline{1}1\overline{1}) = (\overline{1}1\overline{1})$
 - $\circ m_{\{111\}} = 8$
- Фактор Лоренца L_g

$$L_g = \underbrace{\frac{1}{\sin\theta\sin 2\theta}} \sim 1 \div 10$$

- Экстинкция
 - Первичная перерассеяние от нижележащих плоскостей в идеальном кристалле
 - Вторичная перерассеяние от блоков одинаковой ориентации в мозаичном кристалле
 - Коэффициент экстинкции $y_g = (1 + x)^{-\frac{1}{2}} \sim 1 10^{-3}, x = (3/4 N_c \lambda_n \rho |F_g|)^2$ Первичная и вторичная экстинкции***

*pd.chem.ucl.ac.uk/pdnn/diff2/mult.htm ***J. Peters & W. Jauch, Science Progress 85, 4 (2002)

**V. K. Pecharsky. Fundamentals of powder diffraction and structural characterization of materials. Springer Science+Business Media, Inc. 2003

Дифракционные конусы и фактор Лоренца**

• Поглощение A_g

$$\circ \qquad A_g = \frac{1}{V} \int_V e^{-\mu_A l} dV ~\sim 1 - 10^{-3}$$

• Фактор Дебая-Уоллера e^{-2W_g}

$$\circ \qquad 2W_g = \frac{1}{3} \langle u^2(q^2) = \frac{16\pi^2}{3} \langle u^2 \rangle \frac{\sin^2 \theta}{\lambda_n^2} = 2B \frac{\sin^2 \theta}{\lambda_n^2}$$

$$O \qquad B = \frac{2h^2}{m_A k_B T} \int_0^\infty g(v) \frac{1}{z} \left(\frac{1}{2} + \frac{1}{(e^z - 1)} \right) dv, \quad z = hv/k_B T$$

•
$$B = \frac{6h^2}{m_A k_B \theta_D} \left(\frac{\Phi(x)}{x} + \frac{1}{4} \right), \quad \Phi(x) = \frac{1}{x} \int_0^x \frac{y dy}{\exp(y) - 1}$$

•
$$B_{293K} = 0,4691(16) \text{ Å}^2$$

← В случае кубической решетки

 \leftarrow Модель Дебая $g(v){\sim}v^2$

 Вычисления с помощью теории возмущений функционала плотности

hkl	2 <i>0</i> °	e^{-2W_g} (литературные данные)		e^{-2W_g} (модель Дебая)	
		4 К	300 К	4 К	300 K
111	24	0,99	0,98	0,99	0,98
731	134	0,82	0,63	0,85	0,73

Эксперимент на дифрактометре D20

- Высокоинтенсивный порошковый дифрактометр D20 (ILL, Гренобль, Франция)
- Удаленный эксперимент
- Параметры съемки:
 - Образец калибровочный стандарт Si NIST 640f
 - о *m_{Si}* = 1,27 г
 - \circ $\lambda_{n1} = 1,3$ Å; $\lambda_{n2} = 2,41$ Å
 - o $T = \{4, 6, 77, 300\}$ K
 - о t = 8 * 2 ч + 2 * 20мин ≈ 17 ч
 - \circ Цилиндр из V, d = 6 мм, h = 65 мм
 - о ³He + CF₄ ПЧД

Шаг 1 – вычитание кривой от держателя образца

<u>Шаг 2</u> – учет приборного вклада $p(2\theta)$ $p(2\theta) = I_{real}^V / I_{ideal}^V$

Зависимости функции прибора $p(2\theta)$ от угла рассеяния 2θ (слева) и от переданного импульса q (справа)

 $\Delta I/ar{I}$ в зависимости от переданного импульса q

Ограничения на константу связи g_S^2 в зависимости от радиуса взаимодействия λ . Разрешенная область находится под линиями

Обработка калибровочных данных

SPODI, FRM II (Мюнхен, Германия)

- Порошковый дифрактометр высокого разрешения
- $\lambda_n =$ 1,54822 Å
- *T* = 300 K
- *t* = 30 мин
- ³Не ПЧД
- Угловой диапазон 20: 160°

D1B, ILL (Гренобль, Франция)

 Высокоинтенсивный порошковый дифрактометр

$$\lambda_{n1} = 1,28$$
 Å; $\lambda_{n2} = 2,52$ Å

•
$$T_1 = 295$$
 K; $T_2 = 294$ K

•
$$t_1 = 30$$
 мин; $t_2 = 20$ мин

- ³Не ПЧД
- Угловой диапазон 20: 128°

Схема дифрактометра D1B**

Схема дифрактометра SPODI*

Оценка чувствительности

- Полученная точность измерения амплитуды рассеяния $\Delta a(m{g})/a(m{g}) \sim 10^{-2}$
- Причина несовершенство установки
- Превосходит статистическую точность и систематические вклады
- Потенциально достижимая чувствительность ~ 10^{-3}

Вклад	Абсолютная величина вклада, фм	Величина вклада в систематическую погрешность, фм	Зависимость от переданного импульса <i>q</i>	
Электромагнитное рассеяние	$\sim 10^{-3}$	$\sim 10^{-4}$	Зависит от атомного форм-фактора <i>f(a)</i>	
Тепловые колебания (при <i>T</i> = 293 К)	$\sim 10^{-2}$	$\sim 10^{-3}$	$\sim e^{-q^2}$	
Конечный размер	~ 10 ⁻² (для размеров	~ 10 ⁻³ (для неточности	Зависит от	
кристаллитов	кристаллитов $l = 4.1 \times 10^{-6}$ м)	знания размеров кристаллитов в 1 мкм)	F_g	

 λ . Разрешенная область находится под линиями

Прохождение нейтрона в кристалле без центра симметрии

Теория

• Пространственно-периодический потенциал кристалла:

$$V(r) = \sum_{g} V_g e^{igr} = \sum_{g \ge 0} (V_g e^{igr} + V_{-g} e^{-igr}) = V_0 + \sum_{g > 0} 2v_g \cos(gr + \varphi_g) \stackrel{\text{Разложение по}}{\leftarrow} {}_{\text{векторам обратной}} e^{i\varphi g}$$
 $V_g = v_g e^{i\varphi_g}$

• Амплитуды гармоник содержат все виды взаимодействия...

$$V_g = V_g^N(\mathbf{r}) + V_g^E(\mathbf{r}) + V_g^A(\mathbf{r}) + \cdots$$

• …и определяются структурными факторами F_g :

$$\begin{split} V_g^{\ j} &= \int_{V=1} d^3 r e^{-i g r} V^j(\boldsymbol{r}) = -\frac{2\pi\hbar^2}{m_n} N_c F_g^{\ j}, \\ F_g^{\ j} &= \sum_i a_i^j(\boldsymbol{g}) e^{-i g r_i} e^{-W_{ig}}, \\ a_i^A(\boldsymbol{g}) &= \frac{\tilde{g}_A m_n A_i}{2\pi\hbar^2} \int_{V=1} d^3 r e^{-i g r} \varphi_A(\boldsymbol{r}) \quad \leftarrow \text{Борновское приближение} \end{split}$$

Прохождение нейтрона в кристалле без центра симметрии

Теория

 Потенциал взаимодействия нуклона-источника,
 находящегося в начале координат, с пробным нуклоном (нейтроном):

 $\varphi_A(\boldsymbol{r}) = \tilde{g}_A \, e^{-Mr}/r$, $\tilde{g}_A^2 = g_A^2 \hbar c/8\pi$

• Амплитуда рассеяния на таком потенциале:

 $a_i^A(\boldsymbol{g}) = \frac{m_n c A_i}{4\pi\hbar} \frac{g_A^2 \lambda^2}{1 + g^2 \lambda^2}$

• Соответствующая амплитуда гармоники:

$$V_g^A = -\frac{\hbar c N_c}{2} \frac{g_A^2 \lambda^2}{1 + g^2 \lambda^2} A_g e^{i\varphi_g^A} \equiv v_g^A e^{i\varphi_g^A},$$
$$\sum_i A_i e^{-igr_i} \equiv A_g e^{i\varphi_g^A}$$

• Вблизи брэгговской дифракции:

$$V_g(\mathbf{r}) = 2v_g^N \cos(\mathbf{gr} + \varphi_g^N) + 2v_g^E \cos(\mathbf{gr} + \varphi_g^E) + 2v_g^A \cos(\mathbf{gr} + \varphi_g^A) + \dots$$

- В центросимметричном кристалле выбором начала координат в этом центре все фазы обращаются в нуль
- В нецентросимметричном кристалле имеется сдвиг фазы между различными типами взаимодействия
- Возникают ненулевые силовые поля, определяемые градиентами соответствующих потенциалов

 $\nabla V_g^A(\boldsymbol{r}) = -2v_g^A \boldsymbol{g} \sin(\boldsymbol{g}\boldsymbol{r} + \varphi_g^A)$

• Величины полей определяются их средними по состоянию $\psi(r)$ нейтрона $\langle \psi(r) | \nabla V_g^A(r) | \psi(r) \rangle$

Теория

• Оператор спин-орбитального взаимодействия:

$$H_{SO} = -\frac{\tilde{g}_A \hbar}{2m_n^2 c^2} \gamma_A \boldsymbol{\sigma}_1 \cdot [\nabla \varphi_A \times \boldsymbol{p}]$$

• Среднее оператора:

$$-\left\langle\psi(\boldsymbol{r})\Big|\frac{\tilde{g}_{A}\hbar}{2m_{n}^{2}c^{2}}\gamma_{A}\boldsymbol{\sigma}_{1}\cdot\left[\nabla\varphi_{A}\times\boldsymbol{p}\right]\Big|\psi(\boldsymbol{r})\right\rangle=\Delta_{B}\frac{\nu_{g}^{A}}{\tilde{g}_{A}}\sin\varphi_{g}^{A}\frac{\hbar\tilde{g}_{A}}{2m_{n}c}\gamma_{A}\boldsymbol{\sigma}_{1}\left[\frac{\boldsymbol{\nu}}{c}\times\boldsymbol{g}\right]\equiv\\\equiv\Delta_{B}\frac{\hbar\tilde{g}_{A}}{2m_{n}c}\gamma_{A}\boldsymbol{\sigma}_{1}\boldsymbol{H}_{g}^{A}\equiv\Delta_{B}\frac{\hbar\tilde{g}_{A}}{2m_{n}c}\gamma_{A}\boldsymbol{\sigma}_{1}\left[\frac{\boldsymbol{\nu}}{c}\times\boldsymbol{E}_{g}^{A}\right]$$

• Аналог электрического поля:

$$\boldsymbol{E}_{g}^{A} = 4\pi N_{c} \frac{\tilde{g}_{A}\lambda^{2}}{1 + g^{2}\lambda^{2}} A_{g} \boldsymbol{g} \sin \varphi_{g}^{A}$$

• Аналог швингеровского магнитного поля

$$\boldsymbol{H}_{g}^{A} = \left[\frac{\boldsymbol{\nu}}{c} \times \boldsymbol{E}_{g}^{A}\right]$$

В присутствие *H^A_g* произойдет дополнительный поворот спина вокруг направления [*v* × *g*] на угол

$$\delta_A = \omega_A \frac{L}{v} = \Delta_B \frac{\tilde{g}_A \gamma_A H_g^A}{m_n c} \frac{L}{v} = \Delta_B \frac{\hbar \gamma_A g N_c L}{2m_n c} \frac{g_A^2 \lambda^2}{1 + g^2 \lambda^2} \sin \varphi_g^A \sin \alpha_B$$

- ω_A частота вращения спина в эффективном поле H_g^A
- Δ_B безразмерный параметр отклонения от условия Брэгга
- $lpha_B$ угол между направлениями векторов $oldsymbol{
 u}$ и $oldsymbol{g}$

Эксперимент на реакторе ВВР-М

- Анализ данных эксперимента по поиску ЭДМ нейтрона кристалл-дифракционным методом
- Плоскость (110) кристалла кварца $140 \times 140 \times 35$ мм³
- Угол дифракции 86°
- Однородность межплоскостного расстояния по всему объему кристалла $\Delta d/d < 5\cdot 10^{-6}$
- Регулировка вторым кристаллом параметра отклонения нейтронов от условия Брэгга, определяющего величину действующего электрического поля

Ограничения на константу связи

- Угол вращения совпадает с теоретическим значением на уровне ${\sim}10^{-2}$
- Полученные ограничения $g_A^2 \le 4,5 \cdot 10^{-24} (g^2 + 1/\lambda^2)$

Зависимость угла поворота спина нейтрона φ_S за счет швингеровского взаимодействия от разницы температур кристаллов кварца ΔT^*

Ограничения на произведение констант связи g_A^2 в зависимости от радиуса взаимодействия λ . Разрешенная область находится ниже линий

Заключение

- Предложен новый метод поиска межнуклонного скаляр-скалярного взаимодействия
- Проведен анализ потенциально достижимой точности метода
- Из экспериментальных данных порошковой дифракции нейтронов получены ограничения, которые улучшают уже существующие в диапазоне радиусов взаимодействия λ = 10⁻¹³ ÷ 10⁻¹¹ м
- Предложен новый метод поиска межнуклонного аксиально-аксиального взаимодействия
- Из существующих экспериментальных данных по нейтронной дифракции в нецентросимметричном кристалле получены ограничения, которые улучшают уже существующие в диапазоне радиусов взаимодействия λ = 10⁻¹² ÷ 10⁻⁶ м

Спасибо за внимание!