Измерение асимметрии и поляризации **Л-гиперона в эксперименте СПАСЧАРМ** (ИВФЭ, Протвино)

Эксперимент СПАСЧАРМ (ИФВЭ, У-70)

Изучение СПиновых АСимметрий в образовании легких резонансов и ЧАРМония на ускорителе У-70

НИЦ КИ – ИФВЭ, НИЦ КИ – ПИЯФ, НИЦ КИ – ИТЭФ, ОИЯИ, МИФИ

Участники от ПИЯФ

В.А. Андреев, А.Б. Гриднев, Н.Г. Козленко, Д.В. Новинский, В.И. Тараканов, В.С. Темирбулатов

Стратегия эксперимента СПАСЧАРМ

≻Этап 1. Действующий эксперимент на канале 14 ПРОЗА (ПРОЗА-М) → СПАСЧАРМ

≻Этап 2. Создание пучка поляризованных протонов и антипротонов (в будущем, канал 24)

Концептуальный проект эксперимента СПАСЧАРМ. (Проект документа, 15.09.2019)

Сотрудничество НИЦ «Курчатовский Институт» - ИФЕЭ - ОИЯИ - НИЯУ МИФИ

Ппотвино, 2019

Статус эксперимента (ноябрь-декабрь 2021)

- A_N measurements in charged pion, K^0 and $\omega(782)$ production with polarized target
- were destroyed due to COVID-19 limitations in Moscow region and JINR
- New program:
- Precise study of Dilution factor
- A-dependence of vector-mesons and Λ-hyperon production
- (C, Si, Al, Cu, Sn, Pb, W)
- Spin density matrix of vector mesons (ω)
- **A-hyperon polarization**

Планируемая статистика

Задачи СПАСЧАРМ на канале 14 в целом (инклюзив)

Final state	N _{EVENTS}	Final state	N _{EVENTS}
π^+	4.2·10 ⁹	K ⁺	6.7·10 ⁸
π-	8 7·10 ⁹	K -	9.0.10 ⁸
-0		p	9.2·10 ⁷
$\pi^{\circ} \rightarrow \gamma \gamma$	4.3.10	р	$2.6 \cdot 10^8$
$\pi^0 \rightarrow \gamma \gamma$	4.3·10 ⁹	$\mathrm{K}^{0*}(892) { ightarrow} \mathrm{K}^+ \pi^-$	$1.1 \cdot 10^8$
$\eta \rightarrow \gamma \gamma$	4.2·10⁸	$ ilde{K}^{0^*}(892) \rightarrow K^- \pi^+$	4.3 •10 ⁷
$\eta' \rightarrow \pi^+ \pi^- \eta$	8.3 ·10 ⁵	$\mathrm{K}^{+*}(892) \rightarrow \mathrm{K}^{+} \pi^{0}$	1.9.107
${ m K^0}_{ m S} { ightarrow} \pi^+ \pi^-$	1.3.107	$ ilde{K}^{-*}(892) \rightarrow K^- \pi^0$	3.8.107
$ ho^0(770) ightarrow \pi^+ \pi^-$	4.2·10⁸	$\phi(1020) \rightarrow K^+ K^-$	4.3 •10 ⁶
$\eta { ightarrow} \pi^+ \pi^- \pi^0$	5.3·10 ⁶	$\Lambda \rightarrow p \pi^-$	1.4·10 ⁶
$\omega(782) ightarrow \pi^+ \pi^- \pi^0$	3.5.107	$\tilde{\Lambda} \rightarrow \tilde{\tilde{\mathbf{p}}} \pi^+$	1.1.10 ⁶
$\omega(782) \rightarrow \gamma \pi^0$	3.8·10⁷	$\Delta^{++} \rightarrow \mathbf{p} \ \pi^+$	9.3 •10 ⁶
$ ho^+(770) ightarrow \pi^+ \pi^0$	2.9·10 ⁸	$\Delta^{} \rightarrow \tilde{\tilde{p}} \pi^{-}$	2.5.107
$ ho$ -(770) $ ightarrow \pi^- \pi^0$	7.5 ·10 ⁸	$\Xi^- \rightarrow \Lambda \pi^-$	1.9.10 ⁶
${ m K^0}_{ m S} { ightarrow} \pi^0 \ \pi^0$	$1.7 \cdot 10^{7}$	$ ilde{\Xi}^+ \!\!\! ightarrow ilde{\Lambda} \ \pi^+$	1.6.10 ⁶
$a_0(980) \rightarrow \eta \pi^0$	1.8·10⁷	$\Sigma^0 \rightarrow \Lambda \gamma$	1.2.106
$\omega(782) \rightarrow e^+ e^-$	1.7·10 ⁵	$\Sigma^0(1385) \rightarrow \Lambda \pi^0$	3.9.10 ⁶

Ожидаемые результаты исследований

- Разнообразие типов пучков, конечных состояний и наличие нескольких измеряемых односпиновых наблюдаемых позволяют провести глобальное исследование.
- Анализ этих данных дает возможность выявить закономерности поведения односпиновых наблюдаемых от аромата участвующих в реакции кварков, спиновой структуры адронов, содержащих эти кварки и кинематических переменных.
- Сравнение с моделями (Сиверса и Коллинза, вклада высших твистов, Абрамова, хромомагнитной струны – Рыскин, вращения партонов и т.д.) всей совокупности данных может позволить сделать важный шаг в определении механизма поляризационных явлений.

Модель ХПК (В.В. Абрамов, ИФВЭ)

Спин является фундаментальной квантовой характеристикой частиц и мощным инструментом для их исследования.

- $A\uparrow + B \rightarrow C + X$ (односпиновая асимметрия, $A_N(p_T, x_F, \sqrt{s})$).
- A + B \rightarrow C↑ + X (поляризация частицы «С», $P_N(p_T, x_F, \sqrt{s})$).

В т.в. КХД односпиновые эффекты малы: $A_N \approx \alpha_S m_O/E_O \leq 1\%$.

Предлагается новый квазиклассический механизм для односпиновых процессов, который основан на взаимодействии массивных составляющих кварков с эффективным хромомагнитным полем глюонных струн. Прецессия спина кварка в цветовом поле приводит к осцилляции поляризации адронов в зависимости от кинематических переменных.

Механизм хромомагнитной поляризации кварков (микроскопический аппарат Штерна-Герлаха). Кварк-пробник отклоняется влево или вправо в неоднородном поле В^а

Модель ХПК (В.В. Абрамов, ИФВЭ)

Предсказывается осцилляция P_N и A_N как результат прецессии спина составляющего кварка в хромомагнитном поле КХД струн. Частота осцилляции ω_A описывается правилами кваркового счета и растет по абсолютной величине при увеличении энергии \sqrt{s} и атомного веса сталкивающихся ядер.

Сравнение предсказаний

• Предсказания асимметрии для реакций

•
$$p\uparrow + p(A) \rightarrow \pi^+ + X$$
 (слева),

$$p\uparrow + p(A) \rightarrow \pi$$
- + X (в центре)

и р \uparrow + р(A) $\rightarrow \pi^0$ + X (справа)

Асимметрия инклюзивного образования практически не зависит от энергии

На первое место в поляризационных исследованиях уже выходит не энергия, а систематическое исследование и анализ данных большого числа различных реакций.

Формула вычисления односпиновой асимметрии

Односпиновая асимметрия определяется как

$$A_N^H(x_f, p_t) = \frac{1}{P_{target}} \frac{1}{\langle \cos\phi \rangle} \cdot \frac{\sigma_{\uparrow}^H(x_f, p_t) - \sigma_{\downarrow}^H(x_f, p_t)}{\sigma_{\uparrow}^H(x_f, p_t) + \sigma_{\downarrow}^H(x_f, p_t)}$$

*P*_{target} – средняя поляризация мишени;
 ф – азимутальный угол;
 (При малых углах *ф* считается, что все вторичные частицы вылетают под азимутальным углом 0°).

Измеряемая асимметрия

$$A_N = \frac{D(x_f, p_t)}{P_{target}} \cdot A_N^{raw}(x_f, p_t) = \frac{D(x_f, p_t)}{P_{target}} \cdot \frac{n_{\uparrow}(x_f, p_t) - n_{\downarrow}(x_f, p_t)}{n_{\uparrow}(x_f, p_t) + n_{\downarrow}(x_f, p_t)}$$

D - фактор разбавления мишени (отношение числа взаимодействий на всей мишени к числу взаимодействий на водороде)

A_N в реакции инклюзивного рождения π^0 и Λ -гиперона:

В промежуточной области согласно механизму подобия A_N(Λ) напоминает π⁰-асимметрию (Нурушев и др.). Более точные данные необходимы для проверки таких утверждений.

Интерес к проблеме

•Зависимость от кинематики.

Зависимость от типа частиц пучка и мишени, особенно в области фрагментации.

 Измерение поляризации гиперонов возможно благодаря наличию слабого распада, происходящего с нарушением пространственной четности

 $dN/d\Omega = (1 + \alpha Pe_p) / 4\pi = (1 + \alpha Pcos\theta_p) / 4\pi$

 $\mathbf{P}_{\Lambda} = \mathbf{f}_1(\mathbf{s}) \cdot \mathbf{f}_2(\mathbf{p}_T) \cdot \mathbf{f}_3(\mathbf{x}_F)$

Зависимость поляризации гиперона от $p_{\rm T}$ $P{\sim}|F_{\rm sf}|/|F_{\rm nf}|$

•Амплитуда с переворотом спина F_{sf} должна уменьшаться при $p_T \rightarrow 0$ как p_T , согласно сохранению полного углового момента, в то время как такого ограничения не существует для амплитуды без переворота спина F_{nf}

Исследование поляризации гиперонов

Зависимость поляризации гиперона от x_F $P_{\Lambda} = -A \cdot (x_F, p_T) \cdot p_T, A(x_F, p_T) = f(x_F) \cdot g(x_F, p_T)$ предсказывается почти линейная зависимость поляризации Λ гиперонов от x_F с небольшими поправками на более высокие степени x_F и p_T

Исследование поляризации гиперонов

Исследование поляризации гиперона от А

•Сравнение с моделью ХПК (Абрамов)

Экспериментальная установка

Установка СПАСЧАРМ

Пучковая аппаратура, в т.ч. волоконный годоскоп (H0). Комплекс поляризованный мишени, включая магнит «Динозавр» и охранную систему для эксклюзивных реакций (Guard System). Широко-апертурный спектрометрический магнит СПАСЧАРМ. Трековая система, включая **6 плоскостей проп.камер** (PWC1-3), – DT - 18 (†30) плоскостей до магнита и 27 плоскостей после магнита Электромагнитный калориметр ЧСПП-720 из свинцового стекла.

Пучковая аппаратура

Состав пучка (3·10⁶ част./с, 28 ГэВ): 97.5% π⁻, 1.45% К⁻, 0.22% p̄.

Пучковая аппаратура:

пороговые черенковские счетчики Č1- Č3

- π⁻ <u>любые</u> два из Č1- Č3;
- K⁻ Č1 · Č2 · Č3
- \bar{p} $\bar{C}1 \cdot \bar{C}2 \cdot \bar{C}3$

Волоконный годоскоп с разрешением 125 мкм :

Экспериментальная установка (І этап)

Поляризованная мишень

- <u>Target material</u>: pentanol C₅H₁₂O with TEMPO radical
- *Polarization value*: up to 75%
- Dilution factor 7.3
- *Target dimensions*: length 200 mm, diameter 18 mm
- Target thickness: 13.2 g/cm² which is ~10% of interaction length for 28 GeV pions and ~15% for 50 GeV protons

<u>Polarized target operates at extremely low</u> <u>temperature achieved by dilution of He₃ in He₄</u>:

- *The RF-pumping* of polarization takes place in 2.4 T magnetic field at RF-frequency of ~70 GHz at the temperature of ~ 100 mK
- Polarization decay time is ~1000-2000 hours in 0.4 T magnetic field at the temperature of 30-40 mK- Polarization reversal: every 1-2 days

Экспериментальная установка

Трековая система, пропкамеры

1	
2	
3	
4	
5	
6	
7	
30	

3, 6 — плоскости сигнальных проволочек, 2, 4, 5, 7 — высоковольтные электроды, 1, 8 — майларовые окна, ограничивающие газовый объем.

Экспериментальная установка

Пропкамеры, эффективность

Экспериментальная установка (І этап)

Трековая система. Спектрометрический магнит.

место склейки

Drift Chamber

Точность позиции
горизонтали 30 мкм
Точность позиции по
вертикали 60 мкм
Усредненная точность
32 мкм
Размер рабочей области
~ 1,2*2,4 м²

Разрешение ~ 0,2 мм (ИТЭФ, Бонн)

Expected statistics and accuracy

GeV/c	$0 < p_Z \le 4.0$	4.0 < p _Z ≤ 8.0	8.0 < p _Z ≤ 12.0	12.0 < p _Z ≤ 16.0	p _Z > 16.0
$0 < p_{\rm T} \le 0.25$	6.6·10 ⁵	1.6·10 ⁶	5.0·10 ⁵	9.3·10 ⁴	3.2·10 ⁴
$0.25 < p_{\rm T} \leq 0.5$	3.0·10 ⁵	2.4 •10 ⁶	1.1.10 ⁶	3.0·10 ⁵	1.1·10 ⁵
$0.5 < p_T \le 1.0$	3.0·10³	1.0·10 ⁶	1.3·10 ⁶	4.6·10 ⁵	1.6·10 ⁵
$p_{\rm T} > 1.0$	-	4.9·10 ³	1.1·10 ⁵	1.1·10 ⁵	5.0·10 ⁴
GeV/c	$0 < p_Z \leq 4.0$	$4.0 < p_Z \le$	$8.0 < p_Z \le$	$12.0 < p_Z \le$	p ₇ > 16.0
		8.0	12.0	16.0	* 2
$0 < p_T \leq 0.25$	0.016	8.0 0.01	12.0 0,018	16.0 0.043	0.073
$0 < p_T \le 0.25$ $0.25 < p_T \le 0.5$	0.016 0.024	8.0 0.01 0.008	12.0 0,018 0.012	16.0 0.043 0.024	0.073
$0 < p_T \le 0.25$ $0.25 < p_T \le 0.5$ $0.5 < p_T \le 1.0$	0.016 0.024 0.237	8.0 0.01 0.008 0.013	12.0 0,018 0.012 0.011	16.0 0.043 0.024 0.019	0.073 0.039 0.033

Кинематический анализ

Критерий Арментероса-Подолянского, *π*⁻р→Λ^o(*π*⁻p)K^o_s(*π*⁺*π*⁻)

Методика определения V⁰-событий:

The Z-coordinate of the secondary vertex = 7,9 cm from the primary vertex Distance between h+ and h- tracks < 0.6 cm The criterion of Armenteros-Podolyansky

Планируемые статьи на 2022-2023 гг.

- 1. Выстроенность (spin alignment) и инвариантные сечения ρ(770)- и ω(782)- мезонов в инклюзивном образовании при взаимодействии пионов и каонов с энергией 28 ГэВ с ядрами.
- 2. Поляризация и инвариантные сечения А-гиперонов в области фрагментации пучка пионов и каонов с энергией 28 ГэВ при взаимодействии с ядрами.
- З. А-зависимость инвариантных сечений инклюзивно образованных К_s - мезонов на пучках пионов и каонов с энергией 28 ГэВ.
- 4. А-зависимость инвариантных сечений инклюзивно образованных π⁺, π⁻ и π⁰-мезонов на пучках пионов, каонов и антипротонов с энергией 28 ГэВ.
- 5. Экспериментальная установка СПАСЧАРМ для исследования спиновых эффектов во взаимодействии адронов при энергиях У-70.

Выводы и планы

>В ИФВЭ на канале №14 синхротрона У-70 выполняется эксперимент по систематическому исследованию поляризационных явлений сильного взаимодействия в двух десятках реакций в широкой кинематической области.

>За 2 физические экспозиции набрано около 2 млрд. соб.

≻Первые месяцы 2022 г. – испытания ДК и их перевозка в Протвино.

≻Участие в наборе данных, моделирование и анализ в реакции рождения ∧

>(Темирбулатов В.С., диссертация,

Научная сессия ОФВЭ, 21-27 декабря 2021 г.

Спасибо за внимание!

D. Novinsky (PNPI), 21.12.2021