РАДИОИЗОТОПНЫЙ КОМПЛЕКС РИЦ-80. РАЗРАБОТКА НОВЫХ МЕТОДОВ ПОЛУЧЕНИЯ ГЕНЕРАТОРНОГО ИЗОТОПА Sr-82 И ДРУГИХ МЕДИЦИНСКИХ ИЗОТОПОВ

Радиоизотопный комплекс РИЦ-80

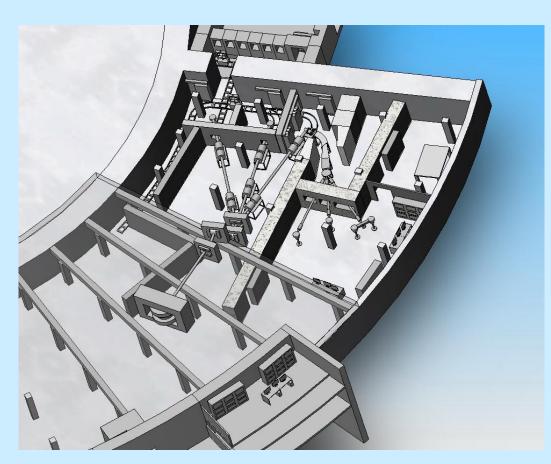
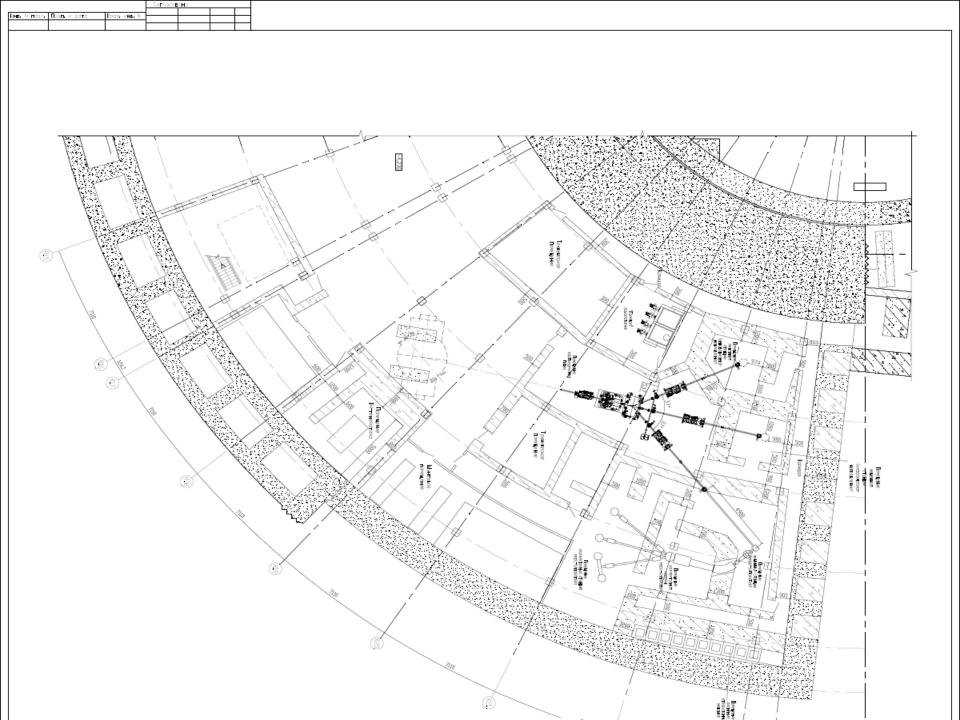


Схема расположения радиоизотопного комплекса РИЦ-80 в подвале экспериментального зала синхроциклотрона Π ИЯ Φ


Три мишенные станции для получения наиболее используемых в настоящее время радионуклидов.

Система автоматической транспортировки для перемещение облученных мишеней в горячие камеры.

Энергия выведенного протонного пучка 40-80 МэВ и интенсивность до 200 мкА обеспечивают самые широкие возможности в получении медицинских радионуклидов и радиофармпрепаратов для диагностики и терапии, которых до настоящего времени не было на других Российских установках.

По своим параметрам и возможностям РИЦ-80 будет соответствовать самым лучшим зарубежным аналогам.

По возможности получения сверхчистых радионуклидов данная установка не будет имеет мировых аналогов.

Радионуклиды, планируемые к получению на РИЦ-80

Радионуклид	T1/2	Мишень	Время облуч. (ч)	Активность в мишени (Ки)	использование
Ge-68 пэт калибр.	270.8 d	Ga	240	2	калибровка ПЭТ сканеров, диагностика заболеваний нейроэндокринной системы
Sr- 82 пэт	25.55 d	Rb, Y	240	10	диагностика заболеваний сердечно-сосудистой системы
Мо-99 офэт+тер	2.74 d	Мо	240	7.3	диагностика и терапия различных видов опухолей
In-111 офэт	2.8 d	Cd	25	24.7	Диагностика воспалительных процессов и злокачественных образований
І-123 офэт	13.27 h	Те	5	10.4	диагностика щитовидной железы, локализация опухолей (нейробластома и феохромоцитома)
І-124 офэт	4.17 d	Te	25	9.3	диагностика щитовидной железы , локализация опухолей, терапия
Тb-149 α-тер	4.1 h	Gd	12	3.5	терапия злокачественных образований на клеточном уровне
Ra-223 α-тер	11.4 d	Th	240	7.3	терапия злокачественных образований

Кроме указанных в таблице радионуклидов, планируется создание линий для выделения Re-188, получаемого на реакторе. Имеется также возможность после осуществления 2-го этапа проекта производить Cu-64, Cu-67, Ga-67, Br-77, Rb-81, At-211.

2000 -2012

Монтаж оборудования циклотрона Ц-80 завершен, в камере получен высокий вакуум

Выход на полную интенсивность –2014г.

Изготовлены три протонных тракта к мишеням РИЦ-80.

РИЦ-80 (Радиоактивные Изотопы на циклотроне Ц-80)

Создание проекта - 2012 -2013 г.; (профинансировано, в 2013 должно быть закончено и отправлено на госэкспертизу)

Строительство комплекса - 2014 - 2016 г. Получение небольших количеств (0.1 - 0.2 Ки) генераторного радиоизотопа Sr-82 - 2014 г.

2012 -2013

2013

Мишенные станции изотопного комплекса РИЦ-80 для получения медицинских радионуклидов и радиофармпрепаратов.

Станция №1:Инновационное направление - масс-сепаратор.

Классификация — разработанные мишенные технологии для получения разделенных радионуклидов высокой чистоты

Разработка ИРИС, ПИЯФ, изготовление НИИЭФА

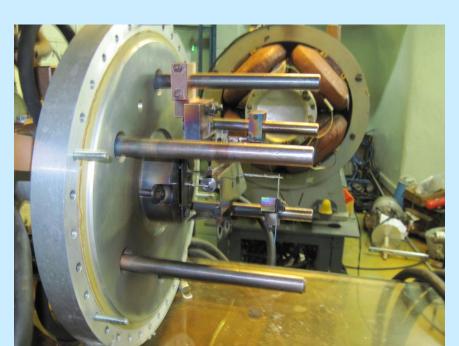
Станция №2: Инновационное направление – сухое выделение. Высокотемпературное выделение радионуклидов из облученных мишенных веществ.

Разработка ИРИС, ПИЯФ, изготовление НИИЭФА

Станция №3: Классическое направление – производство радионуклидов, мокрая радиохимия, полуавтоматизированный или полностью автоматизированный синтез РФП. Классификация- поставка готовой технологии. **Поставщик - Von Gahlen, MicroSpin GmbH**

Распределение возможности наработки нуклидов по трем направлениям

	Масс-сепаратор мишень	Сухое выделение мишень	Классическое направление мишень
SR-82	YC, Rb	Rb, RbCl, YC	Rb
Ge-68	-	Ga	Ga
Mo -99	Мо(разр. спец. ионн. ист.)	Мо	-
In-111	Sn	Cd	Cd
I-123	Te	-	Xe
I-124	Те	Те	
Tb-149	GdC	-	-
Ra-223	ThC	ThC	-
F-18	-	-	H ₂ O

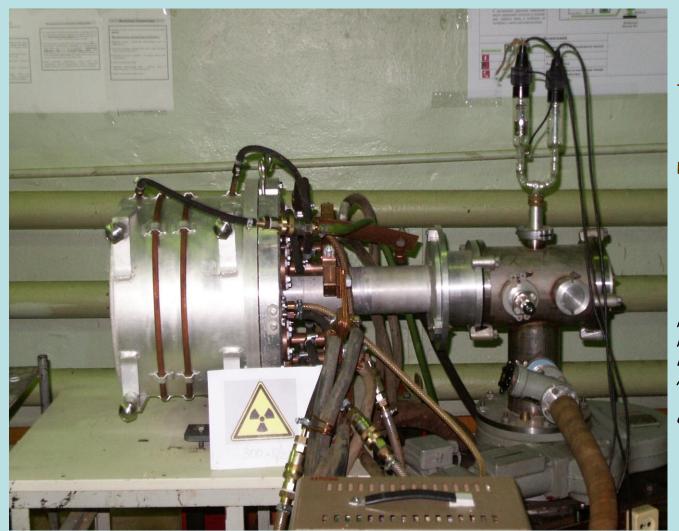

Разработка масс-сепараторного и высокотемпературного «сухого» метода получения медицинских радионуклидов

Главные особенности масс-сепараторного и высокотемпературного «сухого» метода получения медицинских радионуклидов

- 1. Новизна, возможность применения для получения широкого круга медицинских радионуклидов
- 2. Универсальность (в том и другом методе используются идентичные мишенные устройства, разрабатываемые на основе мишенных устройств, созданных и используемых на установке ИРИС
- 3. Выделение производимых радионуклидов в месте их наработки (в вакуумном объеме мишенного устройства) Отсутствие мокрой радиохимии при выделении радионуклида из мишенного материала.
- 4. Увеличение удельной активности на несколько порядков
- 5. В случае использования масс-сепаратора получение сразу нескольких разделенных радионуклидов высокой чистоты

Мишенные устройства с высокотемпературными контейнерами с мишенным веществом

На пучке синхроциклотрона



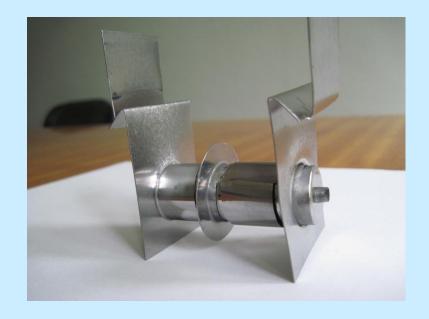
На вакуумном стенде

Масса мишенного вещества до 10 г/см², температура до 2500 °C, что соответствует рабочим условиям на Ц-80 (80 МэВ, 100мкА)

Высоковакуумный стенд с мишенным устройством для выделения генераторного изотопа 82 Sr из облученной мишени из 82 S.

Температура мишенного вещества:

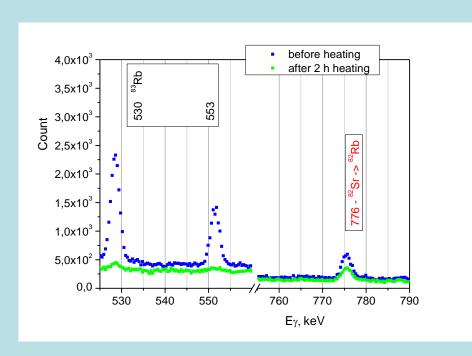
до 2500°C

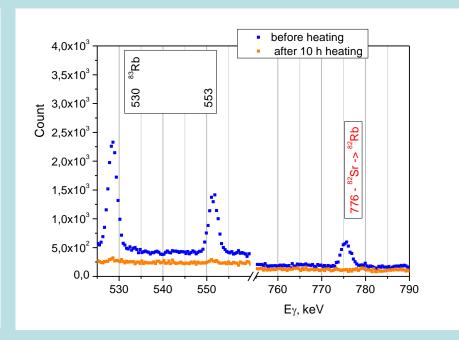

Выделяемая на мишени мощность:

более 9 кВт

Разработанная конструкция мишенного устройства позволяет выделять радионуклиды из мишенных веществ в виде тугоплавких и жидких металлов, а также тугоплавких металлических карбидов

Рабочие прототипы мишеней для РИЦ-80





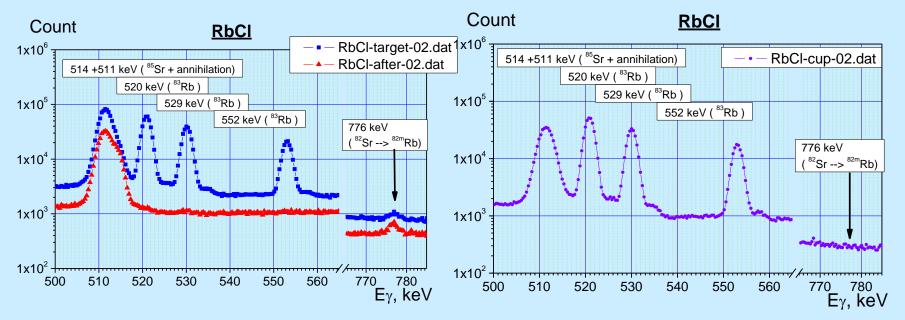
В. Пантелеев, НИЦ КИ, ПИЯФ

Выделение Sr-82 из мишени из дикарбида иттрия и хлористого рубидия

Гамма спектры облученных мишеней YC_2 до и после нагрева в мишенном контейнере

Часть гамма-спектра облученного образца дикарбида иттрия, приготовленного в виде таблеток до его нагревания и после нагревания при температуре $1500\,^{\circ}C$ в течение 2-ух часов.

Эффективность выделения для рубидия 94%, для Стронция 43%.


Часть гамма-спектра облученного образца карбида иттрия, приготовленного в виде таблеток до его нагревания и после нагревания при температуре 1500 °C в течение 10-ти часов.

Эффективность выделения для рубидия 98%, для стронция 98%.

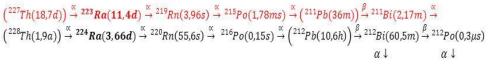
Выделенный таким методом стронций-82 использовался в РНЦ РХТ для тестирования Sr/Rb-82 генератора

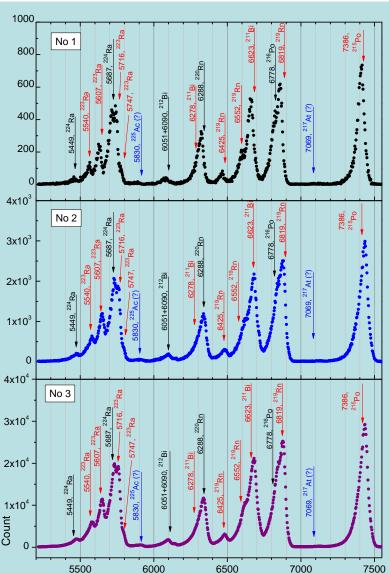
Вывод: из рабочего прототипа мишени из дикарбида иттрия высокой плотности толщиной 10 г/см² эффективность выделения стронция-82 за 10 часов нагрева при температуре 1500 °С составляет величину близкую к 100%.

Гамма спектры облученных мишеней RbCl до и после нагрева в мишенном контейнере

Часть гамма-спектра облученного порошка хлористого рубидия до его нагревания и после нагревания при температуре $800\,^{\circ}C$ в течение 2-ух часов.

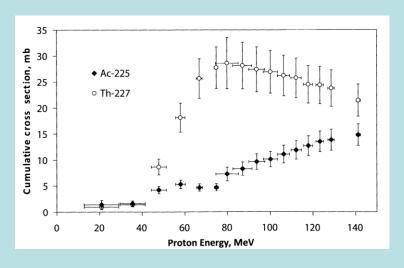
Эффективность выделения стронция 92%.


Часть гамма-спектра облученного порошка хлористого рубидия, испаренного в балластный объем, после нагревания при температуре $800\,^{\circ}C$ в течение 2-ух часов.


Эффективность выделения для рубидия в балластный объем близка к 100%

В настоящее время готовится эксперимент по выделению стронция-82 таким же методом из облученной мишени металлического рубидия

Выделение изотопов ²²³Ra и ²²⁴Ra, распадающихся а-распадом, из мишени из карбида урана-238 высокой плотности


Альфа спектры ^{223,224}Ra высаженных на охлаждаемую подложку в течение двух часов нагрева облученной мишени при разных температурах

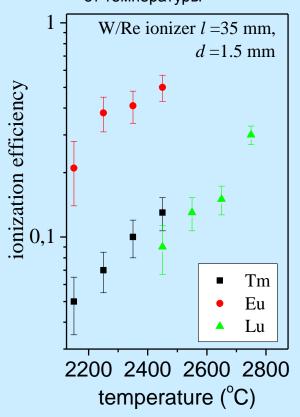
T = 1900 °*C* Эффективность выделения около 2%

T = 2100 °C Эффективность выделения около 10%

Сечение получения 225Ac и 227Th из ториевой мишени (232Th) (S. Ermolaev, B Zhuikov et al., icis7 abstracts, p 32. 4-8 Sept. Moscow, Russia.

 $T = 2300 \, ^{\circ}C$ Эффективность выделения около 90 %

Следующий этап – использование карбида тория высокой плотности в качестве мишени, что обеспечит получение на РИЦ-80 активности изотопов Ra-223, Ra-224 до 2 Ки. Для одновременной наработки разделенных Ra-223, Ra-224 необходимо использование масс-сепаратора


В. Пантелеев, НИЦ КИ, ПИЯФ

Измерение эффективности поверхностной ионизации радиоактивного стронция

Эффективность ионизации атомов некоторых элементов

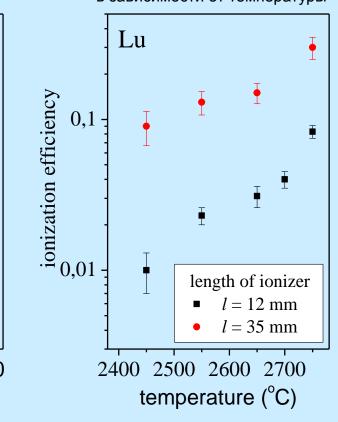
(V.N. Panteleev et al., Rev. Sci. Instrum., Vol. 73, No. 2, p.738, February 2002).

Эффективность ионизации стабильных Изотопов Eu, Tm и Lu в зависимости от температуры

Работа выхода W/Re: 5.2 eV.

Ионизационные потенциалы (eV) :

Vi(Lu) = 6.15


 $V_i(Tm) = 6.14$

 $V_i(Eu) = 5.67$

Для щелочных элементов Li, Na, K, Rb and Cs эффективность ионизации близка к 100%.

Эффективность ионизации

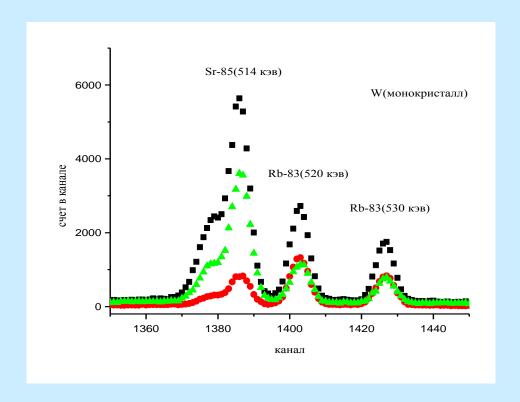
Lu для ионизаторов различной длины в зависимости от температуры

Эффективность поверхностной ионизации:

$$\varepsilon_i = \alpha/(1+\alpha),$$

где

$$\alpha = n_i/n_0 \approx \exp[(\phi - V_i)/kT]$$


Ионизационный потенциал стронция: $V_i(Sr) = 5.69 eV$,

Т.е. ожидаемая эффективность ионизации стронция близка к 100%

Измерение эффективности поверхностной ионизации радиоизотопов стронция

Ионный источник поверхностной ионизации с вольфрамовой трубкой Длиной 20 мм из монокристаллического вольфрама с работой выхода 5 эВ

Измеренная эффективность ионизации рубидия при температуре 2400 $^{\circ}C$ равна 84%, стронция 45%

Как было показано, при увеличении длины ионизатора эффективность ионизации возрастает пропорционально его длине, поэтому, используя источник из монокристаллического вольфрама длиной 50 мм, реально получить эффективность ионизации, близкую к 100% как для стронция, так и для радия

Итоги

Для разрабатываемых прототипов мишеней для РИЦ-80:

получены эффективности выделения стронция-82 (более 90%) из разных мишенных мишенных материалов – YC₂, RbCl. Следующий этап – измерение эффективности выделения из облученного металлического рубидия, т.к. использование металлического рубидия обеспечивает максимальную наработку в мишени стронция-82.

Получена эффективность выделения изотопов радия (более 90%) из мишени урана-238 высокой плотности. Полученные результаты позволяют рассчитывать на высокий выход активности Ra-223,224 (около 2 Ки) из мишени из высокотемпературной мишени карбида тория, которая изготовлена В НПО "ЛУЧ" и будет поставлена в ПИЯФ.

С использованием источника поверхностной ионизации из монокристалла вольфрама с работой выхода внутренней поверхности 5 эВ получена эффективность ионизации радиоактивных атомов стронция выше 40%. Увеличение длины источника до 50 мм позволит получить эффективность Ионизации более 80%.