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Abstract. Within an extended Skyrme soliton model for baryons the interplay between the collective radial
motion and the SU(3)–flavor–rotations is investigated. The coupling between these modes is mediated
by flavor symmetry breaking. Collective coordinates which describe the corresponding large amplitude
fluctuations are introduced and treated canonically. When diagonalizing the resulting Hamiltonian flavor
symmetry breaking is fully taken into consideration. As eigenstates not only the low–lying 1

2

+
and 3

2

+

baryons but also their radial excitations are obtained and compared to the empirical data. In particular
the relevance of radial excitations for the penta–quark baryon Z+ (Y = 2, I = 0, Jπ = 1

2

+
) is discussed.

In this approach its mass is predicted to be 1.58GeV. Furthermore the widths for various hadronic decays
are estimated which, for example, yields Γ (Z+ → NK) ∼ 100MeV for the only permissible decay process
of the Z+.

PACS. 12.39.Dc Skyrmions – 14.20.Gk Baryon resonances with S = 0 – 14.20.Jn. Hyperons

1 Introduction

Recently there has been renewed interest in baryon states
which cannot be described as simple bound states of three
quarks [1–3]. One of the most prominent examples is the
so–called Z+ which possesses the spin and isospin quan-
tum numbers of the Λ hyperon, however, it carries hyper-
charge Y = 2. When extending chiral soliton models to
flavor SU(3) [4,5] such states come about quite naturally
as they are members of higher dimensional representations
which do not have counterparts of equal quantum numbers
in the octet or decuplet.

In the context of chiral soliton models these higher di-
mensional representations have gained most of their recog-
nition from the investigation of flavor symmetry breaking.
Besides such exotic states as the Z+, the higher dimen-
sional representations also contain states which have the
spin and flavor quantum numbers of the low–lying 1

2

+

and 3
2

+ baryons. One easily recognizes that flavor sym-
metry breaking couples states which belong to different
SU(3) representations but otherwise have identical quan-
tum numbers. Hence these states mix with the octet and
decuplet baryons as the higher dimensional representa-
tions provide a basis to obtain the exact eigenstates of
the full collective Hamiltonian [6]. As a consequence the
nucleon is no longer a pure octet state but also contains
sizable admixture of the corresponding members in the
10 and 27 dimensional representations [7,8]. Permissi-
ble representations are those which contain a non–strange
baryon state with identical spin and isospin [9].

Presumably the lightest state which does not have a
counterpart of equal quantum numbers in the octet or
decuplet is the above mentioned Z+. The lowest dimen-
sional representation containing a state with the quan-
tum numbers of the Z+ is the 10. When glancing at the
Young tableau of the 10, , it becomes immediately
clear that such states are not simple bound states contain-
ing only three quarks. Rather they have to be interpreted
as a quark–antiquark pair coupled to a three quark state.
Such objects are commonly called penta–quarks. In [1,
2] quantitative calculations for the mass of the Z+ were
performed within the Skyrme model [10–12]. From Fig. 2
of [1] one deduces that the Z+ should be about 0.7GeV
heavier than the nucleon. This is not too different from the
estimate of [3] where a mass difference of 0.59GeV with
respect to the nucleon was predicted. However, the lat-
ter prediction is just 100MeV above the threshold for the
only accessible decay process, Z+ → NK. While the result
obtained in [1] stems from a self–contained model calcula-
tion the authors of [3] collected almost1 all contributions
up to linear order in flavor symmetry breaking to the col-
lective Hamiltonian and the baryon wave–functions which
are consistent with the general transformation properties
of these objects in flavor space. The associated constants
of proportionality were determined from data for the es-
tablished baryons. In particular (up to flavor symmetry
breaking effects) the N(1710) was identified with the nu-
cleon state in the 10 representation in order to fix the

1 For example, the admixture of the states of the 27–plet to
the octet as well as the coupling between the Z+–type states
in the 10 and 35 representations were omitted
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mass difference of the states within that representation to
the octet baryons. This treatment is not without ambi-
guities because not all baryons are rotational excitations.
In such a picture one first wonders about the role of the
Roper (1440) resonance which in Skyrmion models often is
identified as the radial (or breathing) h̄ω excitation of the
nucleon [13–15]. Secondly it is then natural to consider
the N(1710) resonance as the corresponding 2h̄ω excita-
tion. This scenario leads to the obvious question whether
there is an interplay between radial and rotational excita-
tions and especially to what extent this interplay effects
the predictions for the Z+. The coupling between these
two types of excitations is mediated by flavor symmetry
breaking. For the ordinary baryons this interplay has al-
ready been discussed some time ago [16,17]. It is the pur-
pose of the present study to extend this approach to the
Z+ for which the radial motion has not been considered
previously.

In Sect. 2 the simultaneous treatment of collective co-
ordinates for radial and rotational motion of the soliton
will be discussed for a special chiral model. Also the re-
sulting baryon spectrum will be compared to the empiri-
cal data. In Sect. 3 the widths for various hadronic decay
modes of excited baryons will be estimated. Section 4 will
serve to summarize the present study.

2 Breathing mode approach in flavor SU(3)

In this section we will describe the treatment of large
amplitude fluctuations for radial and rotational degrees
of freedom in a three flavor soliton model. The simplest
model within which such a study can be carried out is
the Skyrme model with only pseudoscalar fields. Unfortu-
nately, the breathing mode approach to this model does
not adequately reproduce the mass differences in baryon
spectrum [16]. For the present investigation we will there-
fore employ an extended version of the Skyrme model
by supplementing it with a scalar field as motivated by
the trace anomaly of QCD. Although the breathing mode
approach to this model reasonably describes the baryon
spectrum as well as various static baryon properties [17]
it seems somewhat unmotivated. A more natural model
choice would rather employ vector meson [18] or chiral
quark [20] models. The reason being that these mesonic
degrees of freedom need to be included in order to obtain
non–vanishing neutron–proton mass differences as well as
a finite axial singlet current matrix element of the nucleon
[21]. In these models meson fields, which vanish classically,
are induced by the collective rotation A(t) in eq (2.8). As
it is yet unknown how to treat the breathing mode in the
presence of these induced fields the model may be con-
sidered as an effective parameterization of massive meson
fields. A particular difficulty with these induced fields is
that the corresponding stationary conditions must sepa-
rately be solved for every value of the scaling coordinate
x in order to maintain the correct normalization of the
Noether currents. In vector meson models this problem oc-
curs already on the classical level for the time component
of the ω field because its stationary condition actually is a

constraint which guarantees the positivity of the classical
energy functional. The incorporation of the breathing co-
ordinate in an SU(2) vector meson model was attempted
in [19], however, the above mentioned subtleties were ig-
nored. In non–topological chiral quark soliton models their
non–confining character may cause additional problems
when treating the breathing mode dynamically because
a transition to the trivial meson configuration may occur
[15].

To be specific we will follow the treatment of [17]
where the soliton model not only contains the pseu-
doscalar mesons φa but also an effective scalar meson field
H = 〈H〉exp(4σ) which is introduced to mock up the QCD
anomaly [22] for the dilatation current

−∂µDµ = H +
∑
i

miΨ̄iΨi where

H = −β(g)
g

GaµνG
aµν . (2.1)

The vacuum expectation value 〈H〉 ∼ (0.30 − 0.35GeV)4

can be extracted from sum rule estimates for the gluon
condensate [23]. Eventually the fluctuating field σ may
be identified as a scalar glueball. The effective mesonic
action reads

Γ =
∫
d4x (L0 + LSB) + ΓWZ . (2.2)

The flavor symmetric part involves both the chiral field2

U = exp(iλaφa/fa) as well as the scalar gluonic fluctua-
tion σ

L0 = −f
2
π

4
e2σtr (αµαµ) +

1
32e2

tr
(

[αµ, αν ]2
)

+
1
2
Γ 2

0 e2σ ∂µσ∂
µσ + e4σ

×
{

1
4

[〈H〉 − 6 (2δ′ + δ′′)]− σ〈H〉
}

(2.3)

with αµ = ∂µUU
†. Assuming the canonical dimensions

d(U) = 0 and d(H) = 4 it is straightforward to verify
that (2.3) yields the anomaly Eq. (2.1) for mi = 0. The
terms which lift the degeneracy between mesons of differ-
ent strangeness are comprised in

LSB = tr
{(

β′T̂ + β′′Ŝ
)

e2σ∂µU∂
µU†U

+
(
δ′T̂ + δ′′Ŝ

)
e3σU + h.c.

}
, (2.4)

where the flavor projectors T̂ = diag(1, 1, 0) and Ŝ =
diag(0, 0, 1) have been introduced. Using a sigma–model
interpretation of the chiral field the coupling of the scalar
field in LSB is such as to reproduce the explicit breaking in
the anomaly eq. (2.1) [24]. The major impact of the scalar
field emerges through the factor e3σ in the mass term of

2 Here the normalization coefficients fa refer to the pseu-
doscalar decay constants
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the symmetry breaking piece (2.4). As will be discussed
later, this mitigates the symmetry breaking effects in the
baryon sector. This factor is special to the model with
the trace anomaly included since it properly accounts for
the explicit breaking of the dilatation current (2.1) as the
quark bilinear Ψ̄iΨi has canonical mass dimension three.

The various parameters in (2.3) and (2.4) are deter-
mined from the masses and decay constants of the pseu-
doscalar mesons:

β′ ≈ 26.4MeV2, β′′ ≈ 985MeV2,

δ′ ≈ 4.15× 10−5GeV2, δ′′ ≈ 1.55× 10−3GeV4 .(2.5)

Then the only free parameters of the model are the Skyrme
constant e and the glueball mass,

m2
σ =

4〈H〉+ 6(2δ′ + δ′′)
Γ 2

0

. (2.6)

As in [17] we will use mσ ≈ 1.25GeV. Finally the scale
invariant Wess–Zumino term [25] is most conveniently
presented by introducing the one–form α = αµdx

µ,

ΓWZ =
iNc

240π2

∫
tr(α5) . (2.7)

The above described model possesses a static soliton solu-
tion U0(r) = exp[iτ ·r̂F (r)], σ(r) = σ0(r) which is charac-
terized by the two radial functions F (r) and σ0(r) [22,26].
Except of unit baryon number this configuration does not
carry baryonic quantum numbers such as spin or isospin.
Baryon states are commonly generated by canonical quan-
tization of the collective coordinates which are introduced
to describe large amplitude fluctuations. Apparently these
are the rotations in coordinate and flavor spaces which are
(up to flavor symmetry breaking) zero modes of the soli-
ton. Due to the hedgehog structure of the soliton these
rotations are equivalent. In addition the energy surface
associated with scale or breathing transformations of the
Skyrmion is known to be flat, at least in a large vicinity of
the stationary point [13,14]. For this reason it is sugges-
tive to also introduce a collective coordinate for the soliton
extension. Then the unknown time–dependent solution to
the Euler equations is approximated by

U(r, t) = A(t)U0 (µ(t)r)A†(t) and
σ(r, t) = σ0 (µ(t)r) . (2.8)

Substituting this parameterization into the action (2.2)
yields the Lagrangian for the collective coordinates A(t)
as well as x(t) = [µ(t)]−3/2

L(x, ẋ, A, Ȧ)=
4
9

(
a1 + a2x

− 4
3

)
ẋ2−

(
b1x

2
3 + b2x

− 2
3 + b3x

2
)

+
1
2

(
α1x

2 + α2x
2
3

) 3∑
a=1

Ω2
a

+
1
2

(
β1x

2 + β2x
2
3

) 7∑
a=4

Ω2
a +
√

3
2
Ω8

−
(
s1x

2 + s2x
2
3 +

4
9
s3ẋ

2

)
(1−D88) . (2.9)

Here the angular velocities A†Ȧ = (i/2)
∑8
a=1 λaΩa

as well as the adjoint representation Dab =
(1/2)tr(λaAλbA†) have been introduced. A term lin-
ear in ẋ, which would originate from flavor symmetry
breaking terms, has been omitted because the matrix
elements of the associated SU(3) operators vanishes
when properly accounting for Hermiticity in the process
of quantization [27]. The expressions for the constants
a1, . . . , s3 as functionals of the chiral angle as well as
their numerical values may be extracted from [17]. The
term involving s3 causes major difficulties in the process
of quantization. This contribution to L stems from the
derivative type symmetry breaker in (2.4) whose influence
in the soliton sector is known to be small3. In addition, by
replacing the collective function 1 −D88 with a constant
of order unity the effects of this term have been estimated
to be only a few percent, cf. appendix B of [16]. Hence
the s3 term may safely be omitted.

The baryon states corresponding to the Lagrangian
(2.9) are obtained in a two–step procedure. In the first
step flavor symmetry breaking is ignored. For convenience
one furthermore defines

m = m(x) =
8
9

(a1 + a2x
− 4

3 ) ,

b = b(x) = b1x
2
3 + b2x

− 2
3 + b3x

2 ,

α = α(x) = α1x
2 + α2x

2
3 ,

β = β(x) = β1x
2 + β2x

2
3

and

s = s(x) = s1x
2 + s2x

2
3 . (2.10)

Then the flavor symmetric part of the collective Hamilto-
nian

H = − 1
2
√
mα3β4

∂

∂x

√
α3β4

m

∂

∂x
+ b

+
(

1
2α
− 1

2β

)
J(J + 1)+

1
2β
C2(µ)− 3

8β
+ s (2.11)

is diagonalized for a definite SU(3) representation µ. Due
to the hedgehog structure of the static configuration U0

and σ0, the allowed representations must contain at least
one state with identical spin and isospin. In addition, this
state must have vanishing strangeness [4,5]. For definite-
ness we denote the eigenvalues of (2.11) by Eµ,nµ and
the corresponding eigenstates by |µ, nµ〉, where nµ labels
the radial excitations. Actually the eigenstates factorize
|µ, nµ〉 = |µ〉|nµ〉. In this language the nucleon corre-
sponds to |8, 1〉 while the first radially excited state, which

3 In numerical calculations the direct contributions of this
term are small. Nevertheless it is important because it has sig-
nificant indirect influence since it provides the origin for differ-
ent decay constants, fK ≈ 1.2fπ. Compared to the unphysical
case fπ = fK the mass type symmetry breaker increases by
about 50% because δ′′ = (2f2

Km
2
K − f2

πm
2
π)/4. The δ′′ term is

contained in s1
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Table 1. The mass differences with respect to the nucleon (939MeV) of the eigenstates of the Hamiltonian (2.12). Experimental
data are taken from [29], if available. It should be remarked that even single–star resonances have been included. The notation
for the states appearing in this table is defined in eq (2.13). All numbers are in MeV

B m = 0 m = 1 m = 2

e=5.0 e=5.5 expt. e=5.0 e=5.5 expt. e=5.0 e=5.5 expt.

N Input 413 445 501 836 869 771
Λ 175 173 177 657 688 661 1081 1129 871
Σ 284 284 254 694 722 721 1068 1096 838
Ξ 382 380 379 941 971 — 1515 1324 —

∆ 258 276 293 640 680 661 974 1010 981
Σ∗ 445 460 446 841 878 901 1112 1148 1141
Ξ∗ 604 617 591 1036 1068 — 1232 1269 —
Ω 730 745 733 1343 1386 — 1663 1719 —

is commonly identified with the Roper (1440) resonance,
would be |8, 2〉. Of course, we are interested in the role
of states like |10, n10〉 since in particular this tower con-
tains the state with the quantum numbers of the Z+. In
the second step the symmetry breaking part will be taken
into account. This is done by employing the states |µ, nµ〉
as a basis to diagonalize the complete Hamiltonian matrix

Hµ,nµ;µ′,n′
µ′

= Eµ,nµδµ,µ′δnµ,n′µ′
−〈µ|D88|µ′〉〈nµ|s(x)|n′µ′〉 . (2.12)

The flavor part of these matrix elements is computed us-
ing SU(3) Clebsch–Gordon coefficients4 while the radial
part is calculated numerically using the appropriate eigen-
states of (2.11). Of course, this can be done for each isospin
multiplet separately, i.e. flavor quantum numbers are not
mixed. The physical baryon states |B,m〉 are finally ex-
pressed as linear combinations of the eigenstates of the
symmetric part

|B,m〉 =
∑
µ,nµ

C(B,m)
µ,nµ |µ, nµ〉 . (2.13)

The corresponding eigenenergies are denoted by EB,m.
The nucleon |N, 1〉 is then identified as the lowest energy
solution with the associated quantum numbers, while the
Roper is defined as the next state (|N, 2〉) in the same spin
– isospin channel. Turning to the quantum numbers of the
Λ provides not only the energy EΛ,1 and wave–function
|Λ, 1〉 of this hyperon but also the analogous quantities
for the radially excited Λ’s: EΛ,m and |Λ,m〉 with m ≥ 2.
These calculations are repeated for the other spin – isospin
channels yielding the spectrum not only of the ground
state 1

2

+ and 3
2

+ baryons but also their radial excitations.
Of course, flavor symmetry breaking couples all possible
SU(3) representations. When diagonalizing (2.12) we con-
sider the basis built by the representations 8, 10, 27, 35,
64, 81, 125, 154 for the 1

2

+ baryons and 10, 27, 35, 35,
64, 28, 81, 81 125, 80 154, 254 for the 3

2

+ baryons. For

4 The Clebsch–Gordon coefficients not provided in [28] are
numerically computed as described in footnote 14 of [16] based
on the Euler angle decomposition of [6]

the breathing degree of freedom we include basis states
which are up to 4GeV above the ground states of the fla-
vor symmetric piece (2.11), i.e. |8, 1〉 and |10, 1〉 for the
1
2

+ and 3
2

+ baryons, respectively. This seems to be suf-
ficient to get acceptable convergence when diagonalizing
(2.12). It should be noted that not all of the above SU(3)
representations appear in each isospin channel. For exam-
ple, there is no Λ–type state in the 10.

In Table 1 the predictions for the mass differences5

with respect to the nucleon of the eigenstates are shown
for two values of the Skyrme parameter e. The agree-
ment with the experimental data is quite astonishing,
not only for the ground state but also for the radial ex-
citations. Only the prediction for the Roper resonance
(|N, 2〉) is on the low side. This is common to the breath-
ing mode approach [13,14]. As far as data are available
the other first excited states are quite well reproduced.
On the other hand for the 1

2

+ baryons the energy eigen-
values for the second excitations overestimate the corre-
sponding empirical data somewhat. However, the pattern
M(|N, 2〉) < M(|Σ, 2〉) < M(|Λ, 2〉) is reproduced. The
predicted Σ and Λ type states with m = 2 are about
200MeV too high. For the 3

2

+ baryons with m = 2 the
agreement with data is much better, on the 3% level. On
the whole, the present model gives fair agreement with
the available data. This certainly supports the picture of
coupled radial and rotational modes.

Above we stated that the factor e3σ in (2.4) mitigated
the effects of flavor symmetry breaking in the soliton sec-
tor. For the soliton solution the σ field is always nega-
tive. Hence the contribution of the mass–type symmetry
breaker to s(x) in (2.10) is significantly reduced as com-
pared to the pure pseudoscalar case. As already discussed,
the mass–type symmetry breaker strongly dominates over
the kinetic–type, which is suppressed by the factor e2σ.
Since applying the breathing mode approach to the pure
pseudoscalar model (i.e. σ ≡ 0) overestimates the flavor
symmetry breaking in the baryon mass differences [16],

5 In soliton models commonly only mass differences are con-
sidered to avoid the inclusion of meson loop corrections which
reduce the absolute values substantially [30]
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Table 2. The strange content fractions XS for the J = 1/2
ground state compared to the flavor symmetric case (pure
octet). Up to the provided precision the results coincide for
e = 5.0 and e = 5.5. The differences to the pure octet case
indicate the significance of the higher dimensional representa-
tions

N Λ Σ Ξ

e = 5.0 0.16 0.25 0.30 0.37
Octet 0.23 0.30 0.37 0.40

the incorporation of the scalar glueball field improves on
the predicted baryon spectrum [17]. In the pure Skyrme
model a reduction of symmetry breaking effects can be
gained by decreasing the Skyrme constant e. Unfortu-
nately this also lowers the difference between the nucleon
and the ∆ masses. As can be observed from Table 1 in [16]
an overall satisfactory picture cannot be obtained in the
breathing mode approach to the pure pseudoscalar model.

In Fig. 1 the dominant pieces of the radial wave–
functions

f (B,m)
µ (x) =

∑
nµ

C(B,m)
µ,nµ f (0)

µ,nµ(x) (2.14)

are shown for the 1
2

+ ground states. Here f (0)
µ,nµ(x) denote

the radial eigenfunctions of the flavor symmetric formula-
tion (2.11) multiplied by (α3(x)β4(x)/m(x))(1/4) [16]. It
should be noted that these radial wave–functions are nor-
malized with respect to a metric m(x) which is singular at
x = 0, cf. (2.10). Hence all wave–functions vanish at that
particular point. We observe that these ground states are
dominated by the radial ground state in the octet repre-
sentation. Nevertheless the contributions from the higher
dimensional representations are not negligible either. This
can also be seen from the strange content fractions of these
baryons. This quantity can be associated with the matrix
elements XS = 〈(1−D88)/3〉 [31]. The sizable deviations
from the pure octet results are shown in Table 2. It is
also interesting to note that the strange content fraction
for the Roper and the N(1710) respectively decrease from
23% to 14% and from 25% to 19% (e = 5.0) due to flavor
symmetry breaking.

In Fig. 2 the dependence on the scaling variable for
the first two excited nucleon states is shown. As expected
the Roper is dominantly a radial excitation of the octet.
However, there are also sizable contributions of the ra-
dial ground states in the higher dimensional representa-
tions. For the state which we want to associate with the
N(1710) we indeed find that the 10 contributes the ma-
jor share. On the other hand the admixture of the 2h̄ω
excitation of the octet is not negligible either. Hence the
identification of the N(1710) with |N,10〉 appears as an
over–simplification.

It should be noted that the model predicts yet another
eigenstate of (2.12) just about 50MeV above the state we
just identified as N(1710). This is essentially the linear
combination of the |N,10〉 and the 2h̄ω radial excitation of
the octet which is orthogonal to the wave–function shown

in the right panel of Fig. 2. Although the Particle Data
Group (PDG) [29] gives 2.1GeV for the average value
of the mass of the third resonance in the P11 channel
there is also an analysis [32] of the data which yields
a significant lower resonance position, 1.885 ± 0.030GeV.
In particularly one should note that the four–pole fit of
[33] predicts two states around 1.75GeV in the P11 chan-
nel which are less than 10MeV apart. We find a similar
scenario on the Σ channel, although about 200MeV too
high. In Table 1 the |Σ,m = 2〉 state has been consid-
ered to be the Σ(1770)P11. In addition we observe a Σ–
type state 1.135GeV above the nucleon for e = 5.0 and
1.181GeV for e = 5.5. Eventually this could be identified
with the Σ(1880)P11 [29]6. One should bear in mind that
the analyses leading to this two–star resonance are some-
what dated and are spread between7 1.826 ± 0.020 [34]
and 1.985 ± 0.050GeV [35]. Nevertheless one is inclined
to consider the predicted two almost degenerate states in
that energy regime as a nice feature of the present model.
In the Λ and Ξ channels no such doubling is observed as
the 10 does not contain states with the quantum numbers
of these baryons. However, this representation contains a
Y = −1, I = 3

2 state which is not considered here.
States with the quantum numbers of the Z+ exist be-

sides in the 10 also in the 35, 81 and 154 representa-
tions. Actually these are always the complex conjugates
of representations which also contain Ω–type states. This
is a direct consequence of the complex conjugation being
equivalent to a reflection at the Y = 0 axis. Upon this
reflection the Ξ∗–type state is transformed into a nucleon
type state which then satisfies the conditions J = I and
S = 0 while the Ω becomes the Z+.

The resulting radial structure of the Z+ wave–function
is displayed in the left panel of Fig. 3. We recognize that
the higher dimensional contributions are not negligible. In
particular the amplitude of the 35 is almost half as large
as the leading order piece residing in the 10. It should
be noted that up to only first order in flavor symmetry
breaking the Z+ states in 10 and 35 have non–vanishing
overlap. In the estimate of [3] this overlap was not taken
into account. As the second order perturbation to the en-
ergy of a ground state is always negative one would specu-
late that the mass of the Z+ would even be reduced when
this effect was included. However, here the mass of the
Z+ is predicted to be 1.57GeV and 1.59GeV for e = 5.0
and e = 5.5, respectively. This is 40 to 60MeV larger than
the result of [3]. As compared to the octet, the centrifu-
gal barrier for states in the 10 representation is stronger.
Hence the corresponding eigenfunctions of (2.11) are lo-
calized at larger values of the scaling variable x. This effect
can be observed by comparing the radial wave–functions
in Figs. 1 and 3. In turn it leads to more sizable contri-
butions associated with flavor symmetry breaking (2.12)
than in the model without breathing mode. In order to fur-
ther illuminate the statement that the Z+ wave–function
is pushed to larger values of x also the wave–function of
the ∆ is shown in Fig. 3. We note that although in lead-

6 In [3] this state was speculated to be the pure |Σ,10〉
7 Cf. the references compiled by the PDG: p. 652 in [29]
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Fig. 1. The contributions of the lowest SU(3) representations µ to the radial parts of the ground state baryons with J = 1/2.
Here e = 5.0 is used
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Fig. 2. The contributions of the lowest SU(3) representations µ to the excited states with nucleon quantum numbers. Here
e = 5.0 is considered

ing order the Z+ and ∆ have the same Casimir eigenvalue
C2(10) = C2(10) = 6 the centrifugal barrier is smaller
for the ∆ because α(x) > β(x) in the Hamiltonian (2.11).
It should be remarked that the singular behavior of the
metric m(x), which enters the evaluation of all matrix ele-
ments, intensifies this effect. The increase of the mass due
to the Z+ being localized at larger x is a leading order ef-
fect in flavor symmetry breaking which effects the strange
content fraction Xs. In the flavor symmetric case we find
Xs = 25% for the Z+. When the flavor symmetry break-
ing effects are included it is reduced to about 18%. This
implies that the Z+ possesses a significant cloud of non–
strange mesons. It is finally worthwhile to note that the
first excited state in the Z+ channel is at 2.02(2.07)GeV
for e = 5.0(5.5).

3 Estimate of widths

The soliton model described in the preceding section has
been shown to reasonably describe not only the spectrum
of the low–lying 1

2

+ and 3
2

+ baryons but also various
baryon static properties. In particular the inclusion of the
radial collective coordinate properly reproduces the ex-
perimentally observed deviation from U–spin symmetry of
the predictions for the baryon magnetic moments [16,17].

This deviation remains unobserved as long as flavor sym-
metry breaking effects on the extension of the soliton are
not included [36,5]. Hence one is inclined to assume that
also the widths for various decays of the predicted states
(resonances) are reasonably described. Here we are inter-
ested in the decay Z+ → K(+,0)N which should be medi-
ated by a pseudoscalar Yukawa coupling. In soliton models
such a coupling is not directly obtainable as to leading or-
der in 1/NC terms linear in the meson fluctuations vanish
by definition. One possibility to avoid this problem is to
adopt the Goldberger–Treiman relation, which relates the
relevant coupling constant to the axial charge. Along that
line the matrix element of D33 was used in [11] to predict
the amplitude for the decay ∆→ Nπ and relate it to the
πN coupling constant. In the present model the situation
is even less transparent as we also demand the depen-
dence of the transition operator on the scaling variable x.
Assuming, for the time being, that we have obtained the
relevant operator in the space of the collective coordinates
the corresponding matrix element will yield the coupling
constant GB′→Bφ associated with the decay of the reso-
nance B′ to another baryon state B and a meson φ. This
coupling constant then enters the width via

Γ (B′ → Bφ) =
3G2

B′→Bφ
8πMB′MB

|pφ|3 . (3.1)
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Fig. 3. The contributions of the lowest SU(3) representations µ to the penta–quark baryon Z+. Also the wave–functions for
the ∆–resonance are shown. Here e = 5.0 is considered

Here |pφ| is the momentum of the outgoing meson in
the rest frame of the resonance B′. The cubic depen-
dence on |pφ| arises as the amplitude (which enters the
width quadratically) of the pseudoscalar Yukawa coupling
is linear in |pφ|. In addition the phase–space provides one
power in that momentum. For states which are located
just slightly above threshold this cubic dependence on the
momentum rather than the value of the coupling constant
will be the most crucial ingredient to calculate the width
of B′. Hence it is sufficient to get a rough estimate for the
coupling constants in order to allow for a comparison of
various decay processes. It is therefore suggestive to adopt
the following strategy: For the flavor part of the relevant
operator we adopt Dφ,3 which in leading order 1/NC is
the only possible operator compatible with flavor covari-
ance. For the scaling piece we will consider different pow-
ers, µ−n = x2n/3. Different values for the power n can be
motivated by the long range behavior of the pseudoscalar
fields which built up the soliton. Taking straightforwardly
the matrix element of the pion field would result in n = 3
from the spatial integration. Considering that due to the
pseudoscalar character of that field the Fourier transfor-
mation involves the spherical Bessel function j1(qr) would
add a factor r to the integrand [37], whence n = 4. On
the other hand one could argue that in the chiral limit
(mπ = 0) the coupling constant is directly related to the

amplitude of the soliton at large r [38]. As the mass-
less pion field decays like 1/r2 one would be inclined to
adopt n = 2. In this way we will obtain at least the generic
behavior of the coupling constant while the major ingredi-
ent for the decay width, the momentum |pφ|, is computed
from the spectrum calculated in the preceding section. The
widths of various decays will finally be compared by ad-
justing the absolute magnitude to the process ∆ → Nπ,
i.e. Γ (∆ → Nπ) ≈ 120MeV. This corresponds to a mul-
tiplicative normalization of the decay constants which is
also suggested by large–NC considerations [39].

To be precise, we will compute matrix elements of the
form

GB′→Bφ = C∆〈B′m′|x2n/3Da3|Bm〉, (3.2)

with C∆ fitted to Γ (∆ → Nπ). Here we take a = 3
and a = 4 ± i5 for strangeness conserving (φ = π) and
strangeness changing (φ = K) decays, respectively. The
latter case is only relevant for the decay of the Z+. The
baryon wave–functions are those of (2.13) which stem from
diagonalizing the full collective Hamiltonian. The result-
ing widths as well as the ratio of the coupling constants
between the ∆ and the nucleon to the pion are shown in
Table 3. Let us recall that as Γ (∆ → Nπ) is kept fixed
one should consider gπN∆ as an input quantity.
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Table 3. Decay widths (in MeV) and ratio of πN and π∆ coupling constants using the matrix elements (3.2). The decay width
Γ (∆→ Nπ) ≈ 120MeV is fixed. R denotes the Roper (1440) resonance. Experimental data are extracted from [29]

e=5.0 e=5.5 expt.

n 4 3 2 4 3 2

Σ∗ → Σπ 1 1 1 2 2 2 4± 1
Σ∗ → Λπ 33 38 42 37 38 43 32± 4
Ξ∗ → Ξπ 5 7 10 7 9 11 10± 2

R→ Nπ 429 281 156 424 260 145 200 to 320
R→ ∆π 4 2 2 9 6 3 50 to 80

Z+ → NK 118 121 124 130 124 126 ?

gπNN/gπN∆ 0.77 0.79 0.83 0.77 0.79 0.83 0.68

Apparently we find that, at least for the widths of
ground state baryons, the dependence on the power n is
only moderate. The reason is that for these baryons the
major contribution to the scaling part of the matrix el-
ement stems from the vicinity of x = 1. In addition the
shape of the wave–functions of these baryons is quite sim-
ilar in that region, cf. Fig. 1. Hence the effect of different
n is compensated by normalizing to Γ (∆→ Nπ). Regard-
ing the crudeness of our estimate the predicted widths for
the processes Σ∗ → Σπ, Σ∗ → Λπ and Ξ∗ → Ξπ as well
as the ratio gπNN/gπN∆ are in fair agreement with the
empirical data. The case of the Roper (1440) resonance is
different. Here we recognize a strong dependence on the
power n. This is a consequence of the associated breathing
mode wave–function having a node around x = 1.5− 2.0,
cf. Fig. 2. For the decay R→ Nπ the value n = 3 appears
to be reasonable. However, one should be careful with such
a conclusion as the too low prediction for the mass of the
Roper might falsify the result for the width. This is even
more pronounced for the process R → ∆π. Table 3 indi-
cates that at least one order of magnitude is missing for
the width. For the masses given in Table 1 the momentum
of the outgoing pion is 66 (91)MeV for e = 5.0(5.5). Sub-
stituting the physical momentum, |pπ| = 147MeV could
account for an order of magnitude for the decay width
(3.2). Again we recognize that the decay widths are sig-
nificantly more sensible to the mass parameters than to
the decay constants, in particular for processes with kine-
matics just above threshold. For the decay of the Z+, the
process we are mostly interested in, we recognize neither
a strong dependence on the power n nor on the model
parameter e. From the results shown in table 3 it seems
fair to conclude that the width of the process Z+ → NK
follows closely the width of ∆→ Nπ.

Rather than just identifying the matrix element of the
pseudoscalar field with the coupling constant GB′→Bφ one
could imagine to compute this coupling constant via the
axial current and adopt the Goldberger–Treiman relation.
In three flavor space this is different from the above ap-
proach because an additional operator, whose contribution
to GB′→Bφ is suppressed by 1/NC , enters the calculation.
In this approach one calculates the matrix elements

Table 4. Decay widths (in MeV) and ratio of πN and π∆
coupling constants using the matrix elements (3.4). The decay
width Γ (∆ → Nπ) ≈ 120MeV is fixed. R denotes the Roper
(1440) resonance. Experimental data are extracted from [29]

e=5.0 e=5.5 expt.

Σ∗ → Σπ 2 3 4± 1
Σ∗ → Λπ 64 63 32± 4
Ξ∗ → Ξπ 22 23 10± 2

R→ Nπ 71 71 200 to 320
R→ ∆π 2 3 50 to 80

Z+ → NK 82 83 ?

gπNN/gπN∆ 0.70 0.69 0.68

GB′→Bφ ∼ 〈B′m′|
{(
g1x

4/3 + g2

)
Da3 (3.3)

+g3
x2/3

β(x)

7∑
α,β=4

d3αβDaαRβ

}
|Bm〉.

The constants g1, g2 and g3 are functionals of the static
soliton and can be extracted from [16,17]. The additional
operator involves the right SU(3)–generators Ra. As it is
multiplied by the inverse moment of inertia for rotations
into strange direction the contribution of this operator
to the coupling constant will be suppressed by 1/NC .
Hence the adjustment of the coupling constants to the
decay ∆ → Nπ in the spirit of the large–NC expansion
[39] requires to only normalize g1 and g2 rather than
the whole matrix element (3.4). The numerical results
for that calculation are shown in Table 4. The operator
(3.4) does not seem to be very well suited in particular
because the width for the Roper decaying into a nucleon
and a pion is significantly underestimated. We note that
the dependence on the momentum of the outgoing meson
cannot be made responsible for the short–coming in this
process as the resonance is far away from threshold.
For e = 5.5 we have |pπ| = 354MeV which is not too
different from the physical value of 396MeV. Hence using
the physical masses would at best give a 40% increase
of the width. Also the widths for the decays Σ∗ → Λπ
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and Ξ∗ → Ξπ turn out to be somewhat too large. On
the other hand the width for Z+ is slightly reduced
as compared to the use of (3.2). This is mainly due to
the fact that the two SU(3) operators in (3.4) interfere
destructively for the state |Z+,10〉; contrarily they inter-
fere constructively for the ordinary baryons. To be precise,
〈∆,10|D33|N,8〉 = (1/2)〈∆,10|

∑7
α,β=4 d3αβD3αRβ |N,8〉

while 〈Z+,10|DK3|N,8〉 =
−(1/2)〈Z+,10|

∑7
α,β=4 d3αβDKαRβ |N,8〉.

To summarize this section it seems reasonable to state
that the breathing mode approach to the Z+ predicts a
width of that state of the order of 100MeV. This is consid-
erably larger than the prediction of 15MeV found in [3].
As discussed intensively, a major reason for this difference
is not the difference in the coupling constant for the pro-
cess Z+ → KN but rather the larger mass found for the
Z+ in the present approach. As compared to [3] the result
for the mass of the Z+ has increased only moderately by
50MeV. Nevertheless it has noticeable consequences for
the width of the only possible decay mode of this penta–
quark state, Z+ → NK. The momentum of the outgoing
kaon grows from |pK | = 254MeV to 320MeV increasing
the width by a factor of two as for processes which are
just above threshold the momentum of the outgoing me-
son is a quickly rising function of the resonance position.
In order to further compare the width of the Z+ with the
result of [3] it should be noted that such a comparison
should concern the 80MeV displayed in Table 4 because
those authors also included the

∑7
α,β=4 d3αβDaαRβ op-

erator. As discussed this operator lowers the prediction
for the width of the Z+ due to the destructive interfer-
ence with the leading operator Da3. The moment of in-
ertia for rotations into strange directions (β(x)) appears
in the denominator of the additional operator. Hence the
contribution of this operator will be most sensible to the
small–x shape of the wave–function. As already discussed,
the wave–function for the Z+ penta–quark is more pro-
nounced at larger values of x due to the angular barrier
being stronger for states in the higher dimensional SU(3)
representations. As indicated in Fig 3 this is also the case
when we compare with the ∆ wave–function whose matrix
elements set the scale for our estimate of the width. As a
result the contribution of the additional SU(3) operator is
reduced even further. However, this is only a 20–30% effect
and still does not explain the full discrepancy with [3]. At
this point one should note that in [3] the numerical results
for the widths of the 3

2

+ baryons are erroneous8. As those

8 For example, for the process ∆ → Nπ the use of eq
([3]:42) together with the empirical values for the masses of the
involved hadrons and the suggested coupling constant G0 = 19
yields a width of 64MeV rather than the alleged 110MeV. How-
ever, the expression ([3]:56) for the width of the Z+ has been
worked out correctly. As an attempt to locate the possible er-
ror it could be remarked that the replacement of the factor
M2/M1 by its inverse in eq ([3]:49) yields the numerical results
presented in eqs ([3]:42)–([3]:45) for the decay widths of the
3/2+ baryons. The analogous replacement in eq ([3]:56) results
in a Z+ width of about 40MeV [40]

overestimated widths have subsequently been employed to
set the overall scale this is likely to be the reason for the
remaining discrepancy.

4 Conclusions

In the present study we have investigated the coupling
between radial and (flavor) rotational motion of a chi-
ral soliton in flavor SU(3). Upon canonical quantization
of the corresponding collective coordinates this approach
not only describes the spectrum of the low–lying 1

2

+ and
3
2

+ baryons but also that of the excited states in the re-
spective channels. Besides mixing of various SU(3) rep-
resentations the model in particular may account for an
eventual resonance doubling [33] in the nucleon P11 chan-
nel around 1.75GeV. A similar scenario is observed for
the Σ channel. These results provide additional support
for identifying baryon states in the 10 representation of
flavor SU(3) with observed resonances. Subsequently this
picture leads to the question of properly identifying those
baryon states in such higher dimensional representations
which do not have counterparts in the octet or decuplet.
In this respect the Z+ (Y = 2, I = 0, Jπ = 1

2

+) is the
most interesting candidate as probably being the light-
est one. Previously [3] this state was considered to be
a pure 10 baryon. That calculation, however, was not a
full model calculation but rather a compilation of possi-
ble terms allowed by the flavor symmetries of the model.
The constants of proportionality were determined from
the known baryon spectrum and radial degrees of free-
dom were frozen. In this treatment it seems doubtful to ad
hoc identify of the N(1710) (potentially a radially excited
nucleon) with the nucleon state in the 10 representation.
Here we have reflected on that assumption by carrying out
a full model calculation and emphasizing on the admix-
ture of both, higher dimensional SU(3) representation as
well as radially excited baryon states which otherwise have
identical quantum numbers. It should be noted that both
types of admixture are mediated through flavor symme-
try breaking. Despite these major extensions of the model
treatment, the present prediction for the mass of the Z+,
1.58GeV, is only about 50MeV higher than that of [3] but
still about 60MeV lower than the value found in [1]. As
discussed, in the soliton model the determination of the
coupling constants for various decays bears quite some
uncertainties, nevertheless the model calculations suggest
Γ (Z+ → NK) ∼ 100MeV as an estimate for the width
of the Z+. Quite a substantial uncertainty should be at-
tributed to this value. Comparison of the different esti-
mates collected in Sect. 3 suggests ±30MeV. This should
be considered a lower bound for the uncertainty.

Here we have employed a soliton model which besides
the pseudoscalar octet mesons contains a scalar field. This
scalar field has been introduced as to mock up the QCD
trace anomaly. Although this is presumably not the most
natural choice for an effective meson theory, we have moti-
vated this model from the simplicity to include the breath-
ing degree of freedom and its previous success to reason-
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ably describe the spectrum of the low–lying 1
2

+ and 3
2

+

baryons as well as various of their static properties.
Finally one could object that the prediction of exotic

states like Z+ would completely be due to the adopted
quantization scheme for the flavor degrees of freedom. In
the alternative bound state approach [41] a penta–quark
state with the quantum numbers of the Z+ would emerge
as a bound system of the soliton and a kaon, while the or-
dinary hyperons are considered as anti–kaons bound in the
soliton background. Such penta–quark states are found to
be unbound unless the kaon mass is artificially tuned to
about 1GeV. However, the resonance doubling found in
the nucleon and Σ channels around 2GeV is not without
experimental support which indicates that exotic repre-
sentations like the 10 indeed have physical significance.
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