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Abstract. By making a decomposition of the Wigner function in spinor and isospin space we derive a set
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consequences imposed by the chiral invariance on the form of the transport equations is presented.
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I Introduction

The purpose of this paper is to generalize the already ex-
isting formulation of the mean-field transport theory for
the Nambu – Jona-Lasinio (NJL) model [1,2]. The main
aspect of this generalization is an extension of the simpli-
fied one-flavor approach [3] to the more realistic two-flavor
case. Formally, this is achieved by applying the technique
of decomposition of the Wigner function in both spinor
and isospin space. In this way we can also extend and
complement some of the earlier calculations done in the
framework of QED [4] and QHD (quantum hadrondy-
namics) [5], where the Wigner function was decomposed
only in spinor space.

The transport theory for the NJL model was initially
developed by Zhang and Wilets [6]. They used the closed-
time-path formalism together with the effective action
method. Unfortunately, the explicit form of the gap equa-
tion derived by Zhang and Wilets is valid only in the
mean-field approximation. This fact strongly restricts the
possible applications of their advanced method. A further
development in the transport theory for the NJL model
was done in [3], where chirally invariant mean-field trans-
port equations were derived for the one-flavour version of
the model. In the present paper we generalize these results
to the two-flavour case. We take into account all the co-
efficients in the spinor and isospin decomposition. Thus,
although our formulation is restricted to the mean-field
approximation it does not include any further simplify-
ing assumptions concerning the structure of the Wigner
function. This allows us to study the space-time evolution
of the quark distribution functions and the dynamics of
spin. In this way we complement the results of [6] where
only spin saturated systems were considered. We include
also the possibility of having nonzero pseudoscalar con-
densates, which is crucial in studies of the chiral invari-

ance of the theory, and is of interest in connection with
the possible creation of disoriented chiral condensates [7].

We concentrate in more details on two special cases.
The first one corresponds to the exact chiral limit, i.e., to
the situation when the current quark masses vanish. On
the other hand, the second case corresponds to the physi-
cal situation when the current quark masses do not vanish
and are (slightly) different from each other. Studying the
chiral limit we investigate how the concepts of chiral in-
variance can be explicitly included in the formulation of
the transport theory. In this case we follow the treatment
of [3].

The study of the transport theory for the NJL model
becomes interesting in the context of the ultra-relativistic
heavy-ion collisions. One expects that these highly ener-
getic processes offer the possibility of creation of a short-
lived quark-gluon plasma (QGP) [8]. It is very likely that
during such a deconfinement phase transition the chiral
symmetry is restored. This is indicated by lattice simula-
tions of QCD [9] which show that the two phase tran-
sitions occur at the same temperature. Transport theory
based on the NJL model gives us the possibility to study
phenomena connected with the chiral phase transition in
systems out of thermodynamic and chemical equilibrium.
This is an attractive feature of the model, since the meth-
ods for applying QCD directly to such situations have not
been elaborated yet. The QCD transport theory has been
formulated in papers by Heinz [10] and by Elze et al.
[11] but this approach, with few exceptions [12], is not
frequent in phenomenological applications.

In the mean-field approximation the NJL model in-
cludes only quark degrees of freedom. Therefore, this
approach is not fully appropriate for the description of
hadronic matter at low temperatures or densities and one
has to go beyond the mean-field approximation in order
to obtain the agreement of the low-temperature NJL re-
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sults with chiral perturbation theory [13]. On the other
hand, close to the deconfinement and chiral phase tran-
sitions the quark degrees of freedom become relevant. In
this situation the mean-field approach is appropriate since
it describes many important features of the chiral phase
transition like, e.g., the decrease of the in-medium quark
condensate. Consequently, the present formulation of the
transport theory is most suitable for description of the
phenomena happening in the neighborhood of the chiral
phase transition [14–16]. Work concerning the inclusion
of meson degrees of freedom into the transport theory for
the NJL model (this is equivalent to the extension of the
mean-field approach) is currently being carried out by the
Heidelberg group [17].

The paper is organized as follows. In the next Section
we define the model. In Sect. III we introduce the Wigner
function, define its spinor and isospin decomposition, and
discuss the chiral transformation rules. Section IV presents
the quantum kinetic equations satisfied by the coefficients
of the spinor and isospin decomposition. In Sect. V we
do the classical approximation and derive the so-called
constraint equations. This is done separately for massless
and massive quarks. The classical kinetic equations for
the quark distribution functions and for spin densities are
derived in Sect. VI. We summarize the paper in Sect. VII.

II Definition of the model

In this paper we consider the Lagrangian

L = Ψ̄ (i 6∂ − m̂)Ψ +
G

2
[
(Ψ̄Ψ)2 + (Ψ̄ iγ5τΨ)2

]
, (1)

where Ψ = (ψu, ψd) is the doublet of the Dirac fields, G is
the coupling constant, τ = (τ1, τ2, τ3) are the Pauli isospin
matrices, and m̂ is the matrix containing current quark
massesmu andmd. This matrix can be written in the form
m̂ = m0 + m·τ , where m0 = 1

2 (mu +md), m1 = m2 = 0
and m3 = 1

2 (mu −md). For simplicity, the color degrees
of freedom of quarks have been neglected.

Using Lagrangian (1) in the mean-field approximation
we find the following equation of motion for the field Ψ

[i 6∂ − m̂− σ(x)− iγ5π(x)·τ ]Ψ(x) = 0. (2)

Here the mean fields σ(x) and π(x) are defined through
the expressions

σ(x) = −G 〈 Ψ̄(x)Ψ(x)〉 = −G Tr
(
ρ̂ Ψ̄(x)Ψ(x)

)
(3)

and

π(x) = −G 〈 Ψ̄(x)iγ5τΨ(x)〉
= −G Tr

(
ρ̂ Ψ̄(x)iγ5τΨ(x)

)
, (4)

where ρ̂ is the density operator and Tr denotes the trace
over the Fock space.

An important feature of the NJL model is invariance
under several symmetries of QCD. The Lagrangian (1) is

invariant under UV (1) transformations, which leads to the
conservation of the baryon current

∂µV
µ(x) = 0, V µ(x) = 〈Ψ̄(x)γµΨ(x)〉. (5)

In the isospin symmetric case, mu = md, the Lagrangian
(1) is in addition invariant under SUV (2) transformations.
This fact gives the conservation of the isospin current

∂µVµ(x) = 0, Vµ(x) = 〈Ψ̄(x)γµτΨ(x)〉. (6)

In the chiral limit, mu = md = 0, (1) does not change
under SUA(2) transformations. This invariance leads to
the conservation of the axial current

∂µAµ(x) = 0, Aµ(x) = 〈Ψ̄(x)γµγ5τΨ(x)〉. (7)

We note that we have defined the conserved currents as
the expectation values in the state characterized by the
density matrix ρ̂. In this case the conservation laws follow
directly from (2)–(4).

Let us now introduce the Green function

S<ij αβ(x, y) = 〈Ψ̄jβ(y)Ψiα(x)〉, (8)

where i, j and α, β are isospin and spinor indices, respec-
tively (i, j = 1, 2 and α, β = 1, ..., 4). One can easily check
that the Green function (8) fulfills the same equation as
the field Ψ does, namely

[i 6∂ − m̂− σ(x)− iγ5π(x)·τ ]S<(x, y) = 0. (9)

Moreover, the mean fields σ(x) and π(x) can be deter-
mined directly from S<(x, y) via relations

σ(x) = −G trS<(x, x),
π(x) = −G tr iγ5τS

<(x, x), (10)

with the trace tr taken over spinor and flavor indices. One
can observe that (9) and (10) form a closed system of equa-
tions. It will be the subject of our studies in the following
Chapters.

III Wigner function

A Decomposition in spinor and isospin space

Our aim is to derive a set of kinetic equations for the
classical distribution functions. This can be achieved in
the standard way by introducing the Wigner function

Wij αβ(X, p) =
1
h̄4

∫
d4u e

i
h̄p·u S<ij αβ

(
X + 1

2u,X − 1
2u

)
(11)

and finding the equations of motion for this function in
the limit h̄→ 0. In Eq. (11) the quantity X is the center-
of-mass coordinate, X = 1

2 (x + y), and u is the relative
coordinate, u = x− y.

Starting from (9) and using the well known results
for the Wigner transform of the derivative of a two-point
function, ∂f(x, y)/∂xµ, and the Wigner transform of the
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product of a one-point function with the two-point one,
f(x)g(x, y), we find the following equation[

Kµγµ −M(X)−m·τ +
ih̄

2
∂µM(X) ∂µp (12)

−iγ5 π(X)·τ − h̄

2
γ5 ∂µπ(X)·τ ∂µp

]
W (X, p) = 0,

where we use the standard notation ∂µ = ∂/∂Xµ, ∂µp =
∂/∂pµ,Kµ = pµ+ ih̄

2 ∂
µ andM(X) = σ(X) +m0. We note

that in (12) higher order gradients have been neglected,
so it is valid only for weakly inhomogeneous systems. In
addition, there is no collision term on the right-hand side
of (12), which is a consequence of the mean-field approxi-
mation. The effects of collisions have been recently studied
in [16].

Since the Wigner function satisfies the condition
W (X, p) = γ0W †(X, p)γ0 = W (X, p), it can be repre-
sented by the following combination of Dirac tensors Γ

W = F̂ + iγ5P̂ + γµV̂µ + γµγ5Âµ +
1
2
σµν Ŝµν . (13)

In the decomposition (13) each coefficient Ĉ [i.e., the func-
tions F̂(X, p),P̂(X, p),V̂µ(X, p), Âµ(X, p) and Ŝµν(X, p)]
is a hermitian two by two matrix. Thus, it can be further
decomposed in the isospin space according to the rule

Ĉ = C + C·τ . (14)

In this way we generalize the usual approach, which does
not take into account such structure. Similarly to (14) we
introduce the quantity M̂(X) defined as M̂(X) = M(X)+
m·τ = σ(x) +m0 + m·τ .

Many of the functions defined by the spinor and isospin
decomposition, (13) and (14), have a direct physical inter-
pretation. For example, the quantities Vµ(X, p),Vµ(X, p)
and Aµ(X, p) are the phase-space densities of the baryon,
isospin and axial currents. Moreover, according to (10),
the mean fields σ(X) and π(X) are simply related to the
functions F(X, p) and P(X, p)

σ(X) = −8G
∫

d4p

(2π)4
F(X, p) (15)

and

π(X) = 8G
∫

d4p

(2π)4
P(X, p). (16)

For the physical interpretation of the other components
we refer the reader to [4,18].

B Chiral transformations

The most important feature of Lagrangian (1) is its exact
chiral invariance in the case m̂ = 0. Studying the transport
theory it is interesting to analyze the consequences of this
symmetry for the transport phenomena. This has been
already discussed in detail for the one-flavor version of the

model [3]. In this paper we shall generalize these results
to the two-flavor case.

The SUA(2) chiral transformation of the field Ψ is de-
fined as follows

Ψ → Ψ ′ = exp(−iγ5
χ·τ
2

)Ψ

=
(
cos

χ

2
− iγ5n·τ sin

χ

2

)
Ψ. (17)

Here n is a unit vector in direction of χ and χ is the length
of χ. The property (17) induces the transformation rules:

σ → σ′ = σ cosχ− π ·n sinχ (18)

for the scalar mean field and

π → π′ = π cos2
χ

2
− [2(π ·n)n− π] sin2 χ

2
+σn sinχ (19)

for the pseudoscalar mean field, respectively. As expected,
the combination σ2+π2 is an invariant of the chiral trans-
formations. Another consequence of (17) is the transfor-
mation law for the Wigner function

W →W ′ = exp(−iγ5
χ·τ
2

) W exp(−iγ5
χ·τ
2

). (20)

Equation (20) leads to a set of the transformation rules for
the coefficients in the spinor and isospin decomposition.
Their full form is listed in the Appendix. Below we give the
prescriptions for the infinitesimal chiral transformations
(denoting the infinitesimal value of χ by δχ). Infinitesi-
mal chiral transformations of the scalar and pseudoscalar
coefficients are:

F → F ′ = F + P ·n δχ, (21a)
F → F ′ = F + Pn δχ, (21b)
P → P ′ = P −F ·n δχ, (21c)
P → P ′ = P −Fn δχ, (21d)

and of the vector and axial-vector coefficients:

Vµ → V ′µ = Vµ, (22a)

Vµ → V ′µ = Vµ − n×Aµ δχ, (22b)

Aµ → A′µ = Aµ, (22c)

Aµ → A′µ = Aµ − n× Vµ δχ. (22d)

The quantities Sµν ,Sµν , S̃µν and S̃µν [the last two are the
dual spin tensors defined below in (24)] transform in the
same way as the functions F ,F ,P and P . This property
resembles the case of the one-flavor calculation (see (22)
of [3]). In addition, similarly to the one-flavor case one
finds that both Vµ and Aµ are chirally invariant.

IV Kinetic equations

Substituting formula (13) into (12) and comparing the
coefficients appearing at the Dirac tensors we find a set of
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coupled equations

KµV̂µ − M̂ F̂ + π ·τ P̂

= − ih̄
2

(
∂νM∂νp F̂ − ∂νπ ·τ∂νp P̂

)
, (23a)

−iKµÂµ − M̂ P̂ − π ·τ F̂

= − ih̄
2

(
∂νM∂νp P̂ + ∂νπ ·τ∂νp F̂

)
, (23b)

KµF̂ + iKν Ŝνµ − M̂ V̂µ + iπ ·τ Âµ

= − ih̄
2

(
∂νM∂νp V̂µ − i∂νπ ·τ∂νp Âµ

)
, (23c)

iKµP̂ −Kν
ˆ̃S
νµ

− M̂Âµ + iπ ·τ V̂µ

= − ih̄
2

(
∂νM∂νp Âµ − i∂νπ ·τ∂νp V̂µ

)
, (23d)

i(KµV̂ν−Kν V̂µ)−εµναβKαÂβ −π ·τ ˆ̃S
µν

+M̂ Ŝµν

=
ih̄

2
(∂γM∂γp Ŝµν− ∂γπ ·τ∂γp ˆ̃S

µν

). (23e)

In (23d) and (23e) we have introduced the dual spin ten-

sor ˆ̃S
µν

defined through relation

ˆ̃S
µν

= 1
2ε
µναβŜαβ . (24)

Equations (23) represent the spinor decomposition of (12).
It is a generalization of the set of equations (24) – (28)
from [3] where a one-flavor formulation has been ana-
lyzed. In the two-flavor case each of the equations in (IV)
has a matrix form. In order to put the equations in a more
transparent form, we perform an isospin decomposition.
This procedure allows us to deal only with real quantities,
which represent physical observables. At the first stage
of the isospin decomposition we insert expressions of the
form (14) into (23). Subsequently, we calculate the sum
and the difference of the initial matrix equation and its
adjoint for all the formulas appearing in (23). In the re-
sulting five pairs of equations one compares the coefficients
at the Pauli isospin matrices. In doing so, it is convenient
to use two relations

z·{τ , Ĉ} = 2 z·C + 2C z·τ (25)

and
z·[τ , Ĉ] = 2i (z×C) τ , (26)

where z is an arbitrary three-vector and [, ] ({ , }) de-
notes the commutator (anticommutator). Finally, we get
five groups of equations.

Scalar equations:

pµVµ −MF −m·F + π ·P = 0, (27a)

pµ Vµ −M F −mF + πP = − h̄
2

(
∂νπ × ∂νpP

)
, (27b)

h̄

2
∂µVµ = − h̄

2
∂νM∂νpF

+
h̄

2
∂νπ ·∂νpP , (27c)

h̄

2
∂µVµ −m×F + π ×P = − h̄

2
∂νM∂νpF

+
h̄

2
∂νπ∂

ν
pP. (27d)

Pseudoscalar equations:

h̄

2
∂µAµ −MP −m·P − π ·F = 0, (28a)

h̄

2
∂µAµ −M P −mP − πF =

h̄

2
∂νπ × ∂νpF , (28b)

pµAµ =
h̄

2
∂νM∂νpP

+
h̄

2
∂νπ ·∂νpF , (28c)

m×P + π ×F + pµAµ =
h̄

2
∂νM∂νpP

+
h̄

2
∂νπ∂

ν
pF . (28d)

Vector equations:

pµF −
h̄

2
∂νSνµ −MVµ −m·Vµ

= − h̄
2
∂νπ ·∂νpAµ, (29a)

−π ×Aµ + pµ F − h̄

2
∂νSνµ −M Vµ −mVµ

= − h̄
2
∂νπ∂

ν
pAµ, (29b)

h̄

2
∂µF + pνSνµ + π ·Aµ

= − h̄
2
∂νM∂νpVµ, (29c)

−m× Vµ +
h̄

2
∂µF + pνSνµ + πAµ

= − h̄
2
∂νM∂νpVµ −

h̄

2
∂νπ × ∂νpAµ. (29d)

Axial-vector equations:

− h̄
2
∂µP − pν S̃νµ −MAµ −m·Aµ

= − h̄
2
∂νπ ·∂νpVµ, (30a)

−π × Vµ − h̄

2
∂µP − pνS̃

νµ −MAµ −mAµ

= − h̄
2
∂νπ ·∂νpVµ, (30b)

pµP − h̄

2
∂ν S̃νµ + π ·Vµ

= − h̄
2
∂νM ∂νpAµ, (30c)

−m×Aµ + pµP − h̄

2
∂νS̃

νµ
+ πVµ

= − h̄
2
∂νM ∂νpAµ − h̄

2
∂νπ × ∂νpVµ. (30d)
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Tensor equations:

− h̄
2
(∂µVν − ∂νVµ)− εµναβpαAβ − π ·S̃

µν

+MSµν + m·Sµν = 0, (31a)

− h̄
2
(∂µVν − ∂νVµ)− εµναβpαAβ − πS̃µν +MSµν

+mSµν =
h̄

2
∂γπ × ∂γp S̃µν

, (31b)

pµVν − pνVµ − h̄

2
εµναβ∂αAβ

=
h̄

2

(
∂γM∂γpSµν − ∂γπ ·∂γp S̃µν

)
, (31c)

−π × S̃µν
+ m× Sµν + pµVν − pνVµ − h̄

2
εµναβ∂αAβ

=
h̄

2

(
∂γM∂γpSµν − ∂γπ∂γp S̃µν

)
. (31d)

The first two equations in each set of formulas (27)–
(31) can be regarded as the “hermitian” parts of (23).
They correspond to (31)–(35) of the one-flavor approach
[3]. The other equations in formulas (27)–(31) are the
“anti-hermitian” parts of (23) and correspond to (37)–
(41) of [3]. In the case m̂ = 0, using expressions (21) and
(22) defining infinitesimal chiral transformations, one can
check that (27)–(31) are chirally invariant.

Note that (27c), integrated over four-momentum p,
leads to baryon current conservation (5). Analogously, one
finds using (27d) and (16)

h̄ ∂µVµ(X) = 16m×
∫

d4p

(2π)4
F(X, p), (32)

which yields the conservation of the isospin current in the
symmetric case mu = md [compare (6)]. Finally, (28b),
(15) and (16) lead to the expression

h̄ ∂µAµ(X) = −2m0

G
π(X)−16m

∫
d4p

(2π)4
P(X, p), (33)

which reduces to the axial conservation law, (7), in the
chiral limit mu = md = 0. Thus we see that after mak-
ing the gradient expansion, the conservation laws are still
included in the transport equations.

V Constraint equations

A Classical Approximation

In order to obtain classical transport equations one makes
an expansion of the functions F̂(X, p), P̂(X, p), V̂µ(X, p),
Âµ(X, p), Ŝµν(X, p), σ(X) and π(X) in powers of h̄. In
this way each coefficient in the decomposition (13) as well
as the functions σ and π can be represented as a series

Ĉ = Ĉ(0) + h̄Ĉ(1) + h̄2Ĉ(2) + ... . (34)

Inserting expressions of the form (34) into the kinetic
equations (27)–(31) and comparing the terms appearing
in the leading (zeroth) order of h̄ we find a set of con-
straint equations, which connect different leading order
terms of the coefficients Ĉ.

Scalar constraint equations:

pµV(0)
µ −M(0)F(0) −m·F (0) + π(0) ·P(0) = 0, (35a)

pµ V(0)
µ −M(0) F (0) −mF(0) + π(0) P(0) = 0, (35b)

−m×F (0) + π(0) ×P(0) = 0. (35c)

Pseudoscalar constraint equations:

M(0)P(0) + m·P(0) + π(0) ·F (0) = 0, (36a)
M(0) P(0) + mP(0) + π(0) F(0) = 0, (36b)

pµA(0)
µ = 0, (36c)

m×P(0) + π(0) ×F (0) + pµA(0)
µ = 0. (36d)

Vector constraint equations:

pµF(0) −M(0)V(0)
µ −m·V(0)

µ = 0, (37a)

−π(0) ×A(0)
µ + pµ F (0) −M(0) V(0)

µ −mV(0)
µ = 0, (37b)

pνS(0)
νµ + π(0) ·A(0)

µ = 0, (37c)

−m× V(0)
µ + pνS(0)

νµ + π(0)A(0)
µ = 0. (37d)

Axial-vector constraint equations:

pν S̃νµ(0) +M(0)Aµ(0) + m·Aµ
(0) = 0, (38a)

π(0) × Vµ
(0) + pνS̃

νµ

(0) +M(0)Aµ
(0) + mAµ(0) = 0, (38b)

pµP(0) + π(0) ·Vµ
(0) = 0, (38c)

−m×Aµ
(0) + pµP(0) + π(0)Vµ(0) = 0. (38d)

Tensor constraint equations:

−εµναβpαA(0)
β −π(0) ·S̃

µν

(0)+M(0)Sµν(0)+m·Sµν
(0) = 0, (39a)

−εµναβpαA(0)
β −π(0)S̃µν(0)+M(0)Sµν

(0)+mSµν(0) = 0, (39b)

pµVν(0)−pνV
µ
(0) = 0, (39c)

−π(0) × S̃µν

(0)+m× Sµν
(0)+p

µVν
(0)−pνVµ

(0) = 0. (39d)

The constraint equations written above have to be supple-
mented by the expressions for the mean fields to leading
order in h̄

σ(0)(X) = −8G
∫

d4p

(2π)4
F(0)(X, p) (40)

and

π(0)(X) = 8G
∫

d4p

(2π)4
P(0)(X, p). (41)

B Chiral limit

In this subsection we shall analyze the form of the con-
straint equations (35)–(39) in the limit m0 = m = 0 [in
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this case M(0)(X) = σ(0)(X)]. Having in mind the pre-
vious studies relying on the spinor decomposition [3–5],
we expect that quantities F(0), F (0), Aµ(0) and Aµ

(0) can
be used as the fundamental variables in construction of
the transport theory: F(0) describes the quark space-time
distribution, F (0) specifies the isospin of quarks, Aµ(0) de-
scribes the quark spin density, and Aµ

(0) determines the
spin density of quarks with different isospin components.
We note that the “classical” isospin of quarks is described
here by a three-vector. This fact is connected with the
form of the decomposition (14) of the two by two, quan-
tum mechanical density matrix. We also note that (36c)
and (36d) indicate that only three out of four Lorentz
components of Aµ(0) and Aµ

(0) are independent. Therefore,
similarly to the “classical” isospin, the “classical” spin of
quarks is also described by a three-vector.

Let us now express the quantities P(0), P(0), Vµ(0), Vµ
(0),

Sµν(0), S̃
µν
(0), Sµν

(0) and S̃µν

(0) as functions of F(0), F (0), Aµ(0)
and Aµ

(0). First of all, it is easy to notice that (36a) and
(36b) define the pseudoscalar densities in terms of F(0)

and F (0)

P(0) = −π(0) ·F (0)

σ(0)
, (42)

P(0) = −π(0)F(0)

σ(0)
. (43)

In the similar way (37a) and (37b) define Vµ(0) and Vµ
(0) in

terms of F(0), F (0) and Aµ
(0)

Vµ(0) = pµ
F(0)

σ(0)
, (44)

Vµ
(0) = pµ

F (0)

σ(0)
−
π(0) ×Aµ

(0)

σ(0)
. (45)

After a few algebraic manipulations (39a) and (39b) allow
us to express the spin tensors Sµν(0),S

µν
(0) and the dual spin

tensors S̃µν(0), S̃
µν

(0) as functions of Aµ(0) and Aµ
(0)

Sµν(0) = − 1
M2

[
pµπ(0) ·Aν

(0) − pνπ(0) ·Aµ
(0)

]
+
σ(0)

M2
εµναβpαA(0)

β , (46)

S̃µν(0) = −σ(0)

M2

[
pµAν(0) − pνA

µ
(0)

]
− εµναβpα

π(0) ·A(0)
β

M2
, (47)

Sµν
(0) = −π(0)

M2

[
pµAν(0) − pνA

µ
(0)

+ εµναβpα
π(0) ·A(0)

β

σ(0)

]
+ εµναβpα

A(0)
β

σ(0)
(48)

and

S̃µν

(0) =
π(0)

M2

[
pµ
π(0) ·Aν

(0)

σ(0)
− pν

π(0) ·Aµ
(0)

σ(0)
(49)

− εµναβpαA(0)
β

]
− 1
σ(0)

(
pµAν

(0) − pνAµ
(0)

)
.

Here we have introduced the chirally invariant mass

M2(X) = σ2
(0)(X) + π2

(0)(X). (50)

Let us now take into consideration the other constraint
equations appearing in the leading order of h̄. Substituting
expressions (42)–(45) into (35a) and (35b) one finds two
mass-shell conditions

[p2 −M2(X)]F(0)(X, p) = 0 (51)

and
[p2 −M2(X)]F (0)(X, p) = 0. (52)

The third scalar constraint equation is automatically ful-
filled, since P(0) and π(0) are parallel [see (35c) and (43)].

Substituting expression (46) in (37c) and using condi-
tion (36d) one finds

[p2 −M2(X)]π(0) ·Aµ
(0) = 0. (53)

Analogously, by substituting (48) in (37d) and using con-
dition (36c) we get

[p2 −M2(X)]Aµ(0) = 0. (54)

This formula follows also from Eqs. (38a), (47) and (36b).
On the other hand, (38b), (49), (36c) and (53) lead to the
mass-shell constraint

[p2 −M2(X)]Aµ
(0) = 0. (55)

To complete our discussion of the constraint equations
in the chiral limit we should discuss an important prop-
erty of formulas (40) and (41). Using (43) in (41) we find
that (40) and (41) are not independent — they do not
determine separately the values of σ(0)(X) and π(0)(X).
This fact is a consequence of the chiral symmetry. It indi-
cates that only the invariant mass M(X) has a physical
significance.

C Massive quarks

In this subsection we are going to consider the case m 6= 0.
Calculating P(0) from (36b) and substituting into (41) we
find that π(0) and m must be parallel in this case. Using
again (36b) we find that P(0) must also be parallel to m.
Further inspection of (35)–(39) indicates that all quanti-
ties C(0) are parallel to m [i.e., only their third component
is different from zero, C(0) = (0, 0, C(0) 3)]. In this situa-
tion it is convenient to introduce the combinations

C(0)u = C(0) + C(0) 3, C(0) d = C(0) − C(0) 3, (56)



Wojciech Florkowski: Mean-field transport theory for the two-flavour NJL model 83

which describe up and down quarks, respectively. Using
this notation, we can write

P(0)u = −π(0) 3

F(0)u

M(0) +m3
,

P(0) d = π(0) 3

F(0) d

M(0) −m3
(57)

and

Vµ(0)u =
pµF(0)u

M(0) +m3
, Vµ(0) d =

pµF(0) d

M(0) −m3
. (58)

In the massive case the gap equations (40) and (41)
take the form

1 + 4G
∫

d4p

(2π)4

(F(0)u(X, p)
σ(0)(X)

+
F(0) d(X, p)
σ(0)(X)

)
= 0 (59)

and

π(0) 3(X)
[
1 + 4G

∫
d4p

(2π)4

×
( F(0)u(X, p)
σ(0)(X) +mu

+
F(0) d(X, p)
σ(0)(X) +md

)]
= 0. (60)

These two equations lead us to the condition π(0) 3(X) =
0. Thus, in the case when the chiral symmetry is explicitly
broken, the leading contribution to the pseudoscalar con-
densate should vanish (similarly as in the one-flavor case,
see (86) of [3]).

Substituting expressions (58) into the scalar constraint
equations (35a) and (35b), we find the mass-shell condi-
tions[
p2 − (Mf (X))2

]
F(0) f (X, p) = 0 (f = u, d), (61)

where we have introduced the notation

Mu(X) = M(0)(X) +m3,

Md(X) = M(0)(X)−m3. (62)

We turn now to the discussion of the spin dynamics.
First of all, (36c) and (36d) give us the condition

pµAµ(0) f = 0. (63)

The tensor constraint equations (39a) and (39b) can be
used to find the expressions for the spin tensors, namely

Sµν(0) f =
1
Mf

εµναβpαA(0) f
β . (64)

The dual spin tensors are obtained by contracting this
expression with the Levi-Civita tensor as in (24). Using
now (63), (64), (38a) and (38b) we find[

p2 − (Mf (X))2
]
Aµ(0) f (X, p) = 0. (65)

VI Classical transport equations

In this Section we derive classical transport equations.
This requires the study of (27)–(31) up to first order in
h̄. Since the calculations in the chiral limit have different
characteristics from those done for massive current quarks,
we discuss these two cases separately.

A Chiral limit

Substituting (43) and (44) into (27c) we find

pµ∂µF +M∂νM∂νpF = 0, (66)

where F (X, p) = F(0)(X, p)/σ(0)(X) is the chirally invari-
ant quark distribution function (compare (60) of [3]). In
the similar way, substituting (42), (45) and the formula
for P(X, p) obtained from (28b) into (27d) one gets

pµ∂µF +M∂νM∂νpF = ∂µ

(
π(0)

σ(0)

)
×Aµ

(0), (67)

where F(X, p) = F (0)(X, p)/σ(0)(X). In contrast to
F (X, p) the function F(X, p) is not chirally invariant
[under infinitesimal chiral transformations F → F′ =
F+π(0)×(F× n)

(
δχ/σ(0)

)
]. However, one can check that

the form of Eq. (67) is chirally invariant.
In order to find the kinetic equations satisfied by the

functions Aµ(0)(X, p) and Aµ
(0)(X, p) we use (30c) and

(30d), respectively. Calculating P(X, p) from (28a) and
Vµ

(0)(X, p) from (29b), and substituting these two expres-
sions into (30c) we find (to first order in h̄)

pµ∂νAν(0) +M∂νM∂νpAµ(0) + σ(0)∂ν S̃µν(0)

+π(0) ·∂νSµν
(0) = 0. (68)

Analogously, by computing P(X, p) from (28b) and
Vµ(X, p) from (29a), and inserting these expressions into
(30d) we find (again to first order in h̄)

pµ∂νAν
(0) +M∂νM∂νpAµ

(0) + σ(0)∂νS̃
µν

(0)

+π(0)∂νSµν(0) = 0. (69)

Now, using expressions (46)–(49), and defining the leading
parts of the spin tensors, we find the desired equations

pν∂νAµ(0) +M∂νM∂νpAµ(0) +
∂νM
M

[
pµAν(0) − pνA

µ
(0)

]
−εµναβpα

M
σ(0)

∂ν

(π(0)

M
)
·A(0)

β = 0 (70)

and

pν∂νAµ
(0) +M∂νM∂νpAµ

(0) +
σ(0)

M2
∂ν

(
π(0)

σ(0)

)
×[

pµπ(0) ·Aν
(0) − pνπ(0) ·Aµ

(0)

]
+

∂νσ(0)

σ(0)

[
pµAν

(0) − pνAµ
(0)

]
− εµναβpα

σ2
(0)

M2
∂ν ×(

π(0)

σ(0)

)
A(0)
β = σ(0)∂

µπ(0) × F. (71)
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Several comments are in order now:
(a) One can check that (70) and (71) are consistent

with the conditions pµA(0)
µ = 0 and pµA(0)

µ = F (0) ×
π(0). One can also check by a straightforward but tedious
calculation that (70) and (71) are chirally invariant.

(b) The kinetic equations (66), (67), (70) and (71)
together with the mass-shell constraints (51), (52), (54)
and (55) describe the evolution of quarks in the given
scalar and pseudoscalar fields. The calculations within
the NJL model require that these fields are obtained self-
consistently from the quark distribution functions. How-
ever, the discussed set of equations can also be used in the
cases where we are interested in the dynamics of quarks
in external scalar and pseudoscalar fields. For that reason,
the results presented in this Section are an extension of a
part of the earlier results obtained in [19,20]. An interest-
ing novel feature of the present approach is the coupling
between the spin and isospin degrees of freedom.

(c) In the NJL model, one evaluates the mean fields
from the self-consistent equations (15) and (16). However,
due to the chiral symmetry of the model [see discussion
following (55)] only a chirally invariant combinationM2 =
π2

(0) + σ2
(0) can be calculated from the knowledge of the

quark distribution function. Thus, the discussed system of
equations is closed (and can be solved) only in the case
when the ratio π(0)(X)/σ(0)(X) is fixed and independent
of the space-time position coordinateX. Nevertheless, this
ratio can be arbitrary, as required by the chiral invariance
of the system.

(d) Since the ratio π(0)(X)/σ(0)(X) is fixed and arbi-
trary, in practical calculations we can always set it to zero
(this is like choosing the convenient gauge in QED-type
calculations). In this case the form of the kinetic equations
(67), (70) and (71) simplifies substantially and reduces to
that known from the one-flavor approach (compare (62)
and (68) of [3]).

(e) Equation (71) does not guarantee the conservation
of the axial current, see (7) and (33). This fact can be seen
in the special case, π(0)(X)/σ(0)(X) = 0, by using similar
arguments to those presented in the one flavor study [3].
Consequently, solutions of Eq. (71) are constrained by the
condition of the axial current conservation. Only those
solutions which satisfy (7) are valid.

B Massive quarks

Using (28b) and presenting similar arguments to those
used in Section V, we find that the cross product π ×P
vanishes up to the first order in h̄. In this situation (27c)
and (27d) lead to the kinetic equations satisfied by the
distribution functions of the up and down quarks. They
have the following form

pµ∂µF
f (X, p) +Mf (X)∂µMf (X)∂µpF

f (X, p) = 0

(f = u, d), (72)

where F f (X, p) = F(0) f (X, p)/Mf (X).

The kinetic equations for the spin densities follow from
Eqs. (30c) and (30d). Using the formulas for the pseu-
doscalar densities P and P3, calculated from (28a) and
(28b) up to the first order in h̄, we can rewrite (30c) and
(30d) in the form

1
2p
µ∂νA(0)

ν −m3

(
pµP(1) 3 + π(1) 3Vµ(0)

)
+ 1

2M(0)∂ν S̃µν(0)

= −1
2M(0)∂νM(0)∂

ν
pAµ(0) (73)

and

1
2p
µ∂νA(0) 3

ν −m3

(
pµP(1) + π(1) 3Vµ(0) 3

)
+ 1

2M(0)∂ν S̃µν(0) 3

= −1
2M(0)∂νM(0)∂

ν
pAµ(0) 3. (74)

Equations (28a) and (28b) give us additionally two condi-
tions

MuP(1)u = 1
2∂νA

ν
(0)u − π(1) 3F(0)u (75)

and
MdP(1) d = 1

2∂νA
ν
(0) d + π(1) 3F(0) d. (76)

Substituting (58), (75) and (76) into the sum of (73) and
(74), and using formulas for the dual spin tensors we find

pν∂νAµ(0)u +Mu∂νM
u∂νpAµ(0)u

+
∂νM

u

Mu

(
pµAν(0)u − pνA

µ
(0)u

)
= 0. (77)

Similarly, by substituting (58), (75) and (76) into the dif-
ference of (73) and (74) one finds

pν∂νAµ(0) d +Md∂νM
d∂νpAµ(0) d

+
∂νM

d

Md

(
pµAν(0) d − pνA

µ
(0) d

)
= 0. (78)

Equations (77) and (78) are the analogs of the spin kinetic
equation derived for the first time in [3].

The mass-shell conditions allow us to express
Fu,d(X, p) as the sum of the quark and antiquark dis-
tribution functions f+

u,d(X,p) and f−u,d(X,p)

Fu,d(X, p) = 2π

{
δ
(
p0 − Eu,dp (X)

)
2Eu,dp (X)

f+
u,d(X,p) (79)

+
δ
(
p0 + Eu,dp (X)

)
2Eu,dp (X)

[
f−u,d(X,−p)− 1

]}

where

Eu,dp (X) =
√

(Mu,d(X))2 + p2. (80)

Substituting this formula into (72), and integrating over
p0 gives

pµ∂µf
±
u,d(X,p) +Mu,d(X)∂µMu,d(X)∂µp f

±
u,d(X,p) = 0.

(81)
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Using expression (79) we can also rewrite the gap equation
in the more familiar form

M(0) −m0 = −2G
∫

d3p

(2π)3
Mu

Eup (X)

×
[
f+
u (X,p) + f−u (X,p)− 1

]
−2G

∫
d3p

(2π)3
Md

Edp(X)

×
[
f+
d (X,p) + f−d (X,p)− 1

]
. (82)

The last results indicate that the form of the kinetic
equations for the two-flavor approach (with massive cur-
rent quarks) is analogous to that of the one-flavour model.
The up and down quarks, as well as their spins, evolve
in the mean fields Mu and Md, respectively. This allows
to introduce the spin up and spin down densities as the
appropriate combinations of the functions F f (X, p) and
Aµ(0) f (X, p) (compare (69) and (70) of [3]). The only in-
terplay between the two flavors occurs via the gap equa-
tion, which determines the common part of the mean fields
Mu and Md.

VII Summary

In this paper we have derived and analyzed the mean-
field transport equations for the two-flavor NJL model.
In this way we have extended the previous work [3], re-
stricted to only one flavor. By decomposing the Wigner
function in both spinor and isospin space, we could in-
vestigate the most general form of the mean-field classical
transport equations.

We have discussed in detail the case of the chiral limit,
studying the invariance properties of the transport equa-
tions. Our analysis shows the limitations in the applica-
tions of the chirally invariant kinetic equations. This sort
of restrictions is already known from the one-flavor con-
siderations: the ratio π(0)(X)/σ(0)(X) must be constant
and the spin dynamics is constrained by axial current con-
servation.

An additional result of our approach are the trans-
port equations for quark matter moving in the externally
given scalar and pseudoscalar fields. They follow from our
analysis in the case when the self-consistency required in
the evaluation of the meson mean fields is relaxed. These
equations describe non-trivial couplings between the spin
and isospin degrees of freedom.

If the current quarks are massive, the difficulties con-
nected with the requirement of chiral invariance are not
present. The space-time evolution of the up and down
quark distribution functions is determined by the mean
fields Mu(X) = M(0)(X) + 1

2 (mu − md) and Md(X) =
M(0)(X) − 1

2 (mu − md), respectively. The common part
of the mean fields, M(0)(X), is obtained from the self-
consistent gap equation.
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Appendix

In this Appendix we list the chiral transformations rules
obeyed by the coefficients appearing in the spinor and
isospin decomposition of the Wigner function (13).

Scalar and pseudoscalar functions:

F → F ′ = F cosχ+ P ·n sinχ, (A1a)

F → F ′ = F cos2
χ

2
− [2(F ·n)n−F ] sin2 χ

2
+Pn sinχ, (A1b)

P → P ′ = P cosχ−F ·n sinχ, (A1c)

P → P ′ = P cos2
χ

2
− [2(P ·n)n−P ] sin2 χ

2
−Fn sinχ. (A1d)

Vector and axial-vector functions:

Vµ → V ′µ = Vµ, (A2a)

Vµ → V ′µ = Vµ cos2
χ

2
+ [2(Vµ ·n)n− Vµ]

−n×Aµ sinχ, (A2b)
Aµ → A′µ = Aµ, (A2c)

Aµ → A′µ = Aµ cos2
χ

2
+ [2(Aµ ·n)n−Aµ]

−n× Vµ sinχ, (A2d)

Tensor functions:

Sµν → S ′µν = Sµν cosχ+ S̃µν ·n sinχ, (A3a)

Sµν → S ′µν = Sµν cos2
χ

2
− [2(Sµν ·n)n− Sµν ] sin2 χ

2
+ S̃µνn sinχ, (A3b)

S̃µν → S̃ ′µν = S̃µν cosχ− Sµν ·n sinχ, (A3c)

S̃µν → S̃ ′µν = S̃µν cos2
χ

2
−

[
2(S̃µν ·n)n− S̃µν

]
sin2 χ

2
−Sµνn sinχ. (A3d)
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