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Abstract. We consider a chiral one-loop hedgehog soliton of the bosonized SU(2)f Nambu & Jona-Lasinio
model which is embedded in a hot medium of constituent quarks. Energy and radius of the soliton are
determined in self-consistent mean-field approximation. Quasi-classical corrections to the soliton energy
are derived by means of the pushing and cranking approaches. The corresponding inertial parameters
are evaluated. It is shown that the inertial mass is equivalent to the total internal energy of the soliton.
Corrected nucleon and ∆ isobar masses are calculated in dependence on temperature and density of the
medium. As a result of the self-consistently determined internal structure of the soliton the scaling between
constituent quark mass, soliton mass and radius is noticeably disturbed.

PACS. 12.39.Fe Chiral Lagrangians – 12.38.Lg Other nonperturbative calculations – 12.40.Yx Hadron
mass models and calculations – 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes

1 Introduction

Chiral soliton models have proven to be a fruitful ap-
proach to the description of nucleon structure. Starting
from the Nambu & Jona-Lasinio (NJL) lagrangian [1]
and applying a well defined scheme of approximations one
was able to obtain stationary and localized field config-
urations denoted as non-topological chiral one-loop NJL
solitons. They can be used to model nucleons, ∆ isobars
and strange baryons on the basis of interacting quarks (for
review see [2,3]).

The NJL lagrangian incorporates chiral symmetry and
its spontaneous breakdown [4]. It has been used to study
the restoration of chiral symmetry in a hot and dense nu-
clear medium modeled by a gas of constituent quarks (for
review see [5]). The decrease of the constituent quark
mass at higher temperature and/or density of the medium
describes the phase transition from the chiral condensate
to the chirally symmetric phase. The calculated effects
are in satisfactory agreement with the predictions of lat-
tice calculations and of the chiral perturbation theory as
well.

It is an attractive idea to combine both features of
the NJL lagrangian and to study the behavior of a soliton
embedded in a hot gas of constituent quarks with a dy-
namically generated mass. Such a model incorporates the
restoration of chiral symmetry and the possible dissolution
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of the soliton, which simulates the deconfinement transi-
tion of hadronic matter. In contrast to many other ap-
proaches studying medium modifications the non-topolog-
ical soliton model equips the baryon with an internal struc-
ture which may be modified by the medium.

Using this approach as a model for baryons in hot
hadronic matter one should be aware of its approxima-
tive character which is even not free of inconsistencies.
Below the critical values of temperature and density, the
quark gas is not the ground state of strongly interacting
matter, neither in nature nor within the model. If the soli-
ton is stable the medium itself consists of solitons. This
goes beyond the mean-field approach. The effect we can
study within a mean-field picture is the scale change con-
nected with the reduction of the constituent quark mass
at increasing values of temperature and density and its
effect on the self-consistent mean-field. Such an approach
rests on the assumption that the dominating effect of the
medium consists in the reduction of the constituent quark
mass while its local variation is of minor importance. The
free motion of the quarks representing the medium as a
quark gas is an obvious shortcoming of the approach and
may overestimate the influence of the medium on the soli-
ton. There are attempts [6,7] to replace the quark degrees
of freedom in a part of the effective action by nucleonic
ones without introducing new parameters. The results are
not very encouraging since chiral symmetry is restored al-
ready at normal nuclear density in this approach [6]. For
a more detailed discussion see [8].

The soliton which we investigate is in most respects
identical with the soliton described in [2,7,9]. The dif-
ferences concern the particular treatment of the valence
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quark level and the use of the chemical potential for ad-
justing the baryon number of the soliton.

Due to mean-field approximation and hedgehog ansatz
the soliton has defects already known from the soliton in
vacuum: it violates translational and (iso-)rotational in-
variance. Therefore it is affected by center-of-mass mo-
tion and represents a mixture of nucleon and ∆ isobar
instead of a particle with definite spin and isospin. The
violated translational and rotational symmetries can ap-
proximately be restored. The quasi-classical pushing and
cranking approaches [10] constitute a feasible way to ex-
clude spurious contributions to the energy and to equip
the soliton with the correct values of spin and isospin.
The size of pushing and cranking corrections is controlled
by inertial parameters. While we relate the inertial soli-
ton mass to its total mean-field energy the (iso-)rotational
moment of inertia is calculated numerically. The relation
between inertial mass and internal energy, which is de-
rived in this paper, is an extension of the corresponding
relation for a soliton in vacuum [11].

In Sect. 2, we shortly outline the basic ideas defining
the NJL soliton in a medium of constituent quarks at fi-
nite temperature and density and review the main formu-
lae. We determine that region of density and temperature
where a stable soliton exists. The baryon number of the
soliton and its spatial distribution is considered in Sect. 3.
Here we critically discuss the method to fix the baryon
number to one, which was applied in [7]. The numerically
determined soliton energies and radii are given and dis-
cussed in Sect. 4. In Sect. 5, we determine quasi-classical
corrections to the soliton energy. We consider the soliton
in a boosted and rotating frame and calculate the corre-
sponding inertial parameters and energies. The corrected
nucleon energies are given and discussed in Sect. 6. Con-
clusion are drawn in Sect. 7. An appendix completes the
calculations in Sects. 2, 3 and 5.

2 NJL soliton in a heat bath

We consider an ensemble of up and down quarks withNc =
3 colors and an average current mass m=(mu +md)/2 at
temperature T and chemical potential µ= µu = µd. The
latter will be related to temperature T and density ρ0 of
the medium embedding the soliton. The quarks interact
via a four-quark contact interaction, which consists of a
chirally symmetric combination of a scalar-isoscalar and
a pseudoscalar-isovector term, with the coupling strength
G/2 introduced by Nambu & Jona-Lasinio [1]. The soliton
is defined by an effective action whose derivation from the
SU(2)f NJL Lagrangian incorporates the following steps
(for a review see [2,3]):

1. Introduction of auxiliary meson fields σ and π by means
of a Hubbard-Stratonovich transformation [12,13] in
the generating functional using the imaginary-time for-
malism.

2. Derivation of an effective meson action Aeff [σ,π] by
applying the stationary phase approximation on the
meson fields (no meson loops, σ and π as classical

mean fields). The effective action obtained in this way
consists of a purely mesonic partAm and of a fermionic
part Aq. The latter describes the contributions of the
various quark levels to the effective action (quark de-
terminant).

3. Restriction of the meson fields to static and spherically
symmetric hedgehog configurations

(
σ(r, τ) = σ(r),

π(r, τ) = π(r) r̂
)
. In our numerical calculations, the

meson fields will additionally be restricted to the chiral
circle

(
σ2(r)+π2(r) = σ2

0 = const
)
. Otherwise, a stable

soliton does not exist [14,15].
4. Splitting the quark part of the effective action into

a contribution Aq,sea (sea contribution) which results
from a completely occupied Dirac sea and a resid-
ual contribution Aq,med(T, µ) (medium contribution)
which describes the occupation of the quark levels ac-
cording to temperature and chemical potential (quarks
in levels with positive energy and holes at negative
energy). The sea contribution diverges and is regu-
lated by means of Schwinger’s proper-time regulariza-
tion scheme [16]. The corresponding cut-off Λ is not
considered as a free parameter but is related to the
experimental values of the pion mass and of the weak
pion-decay constant in vacuum [2,17,18].

5. Interaction strength G and cut-off parameter Λ are de-
termined in the vacuum and assumed to be indepen-
dent of T and µ. This assumption ensures the exact
scaling between pion decay constant and constituent
quark mass.

6. The soliton itself is defined as a localized deviation of
the fields from their asymptotic values σ0 and π0 = 0
which describe the homogeneous medium. Solitonic ex-
pectation values are defined by the difference between
the values obtained for solitonic and homogeneous field
configurations.

The relative effective action of the soliton is obtained by
subtracting the effective action Aeff [σ0, 0] of the homoge-
neous configuration from the effective action of the soli-
tonic field

Aeff [σ, π;σ0] ≡ Aeff [σ, π]−Aeff [σ0, 0] (1)
= Am[σ, π;σ0] +Aq[σ, π;σ0] .

It consists of a purely mesonic part

Am[σ, π;σ0] =
1

2G
1
T

∫
d3r

[
σ2(r) + π2(r)− σ2

0

]
(2)

+
m

G

1
T

∫
d3r [σ0 − σ(r)]

and of the quark determinant which can be written

Aq[σ, π;σ0](T, µ) = −NcTr ln
D(µ)
D0(µ)

(3)

= Aq,sea[σ, π;σ0] +Aq,med[σ, π;σ0](T, µ)

with

Aq,sea[σ, π;σ0] = − 1
T
Nc lim

T→0
TTr ln

D(0)
D0(0)

(4)



     

M. Schleif, R. Wünsch: Thermodynamic properties of the SU(2)f chiral quark–loop soliton 173

and

Aq,med[σ, π;σ0](T, µ) = Aq −Aq,sea (5)

= −NcTr ln
D(µ)
D0(µ)

+
1
T
Nc lim

T→0
TTr ln

D(0)
D0(0)

with the trace Tr defined in appendix A. While the medium
contribution (5) is finite and vanishes in the limit (T, µ)→
0 the sea contribution (4) diverges and does not explicitly
depend on the thermodynamical variables. The latter is
regularized by replacing the operator trace Tr (A.2) by a
regularized trace TrΛ (A.3). The single-particle operators

D(µ) = ∂τ + h− µ , (6)
D0(µ) = ∂τ + h0 − µ (7)

consist of the derivative ∂τ with respect to the euclidean
time coordinate τ , the quark hamiltonians

h ≡ h(σ, π) = α·p+ β [σ(r) + iγ5τ ·r̂ π(r)] , (8)
h0 ≡ h(σ0, 0) = α·p+ β σ0 , (9)

and the chemical potential µ. The Dirac matrices are de-
noted by β≡γ0, γ≡(γ1, γ2, γ3), γ5≡ iγ0γ1γ2γ3, α ≡ βγ,
and τ is the vector of Pauli matrices. Spatial coordinates
are denoted by r and have the components ri, the absolute
value r ≡ |r| and unit vector r̂ ≡ r/r.

The crucial quantity for the description of a grand
canonical ensemble of quarks is the thermodynamical (grand
canonical) potential given by

Ω(T, µ) = TAeff = Ωm +Ωq(T, µ) (10)

with
Ωm,q = TAm,q . (11)

On the analogy of the effective action we split the quark
part of the canonical potential into a sea and a medium
contribution

Ωq(T, µ) = −NcTTrΛ ln
D(µ)
D0(µ)

= Ωq,sea
Λ +Ωq,med(T, µ)

(12)
where TrΛ means regularization of only the sea contribu-
tion. For time-independent meson fields the determinants
of the inverse propagators (6, 7) are real and the regular-
ized sea contribution can be written

Ωq,sea
Λ = −Nc

2
lim
T→0

TTrΛ ln
D†(0)D(0)

D†0(0)D0(0)
. (13)

In the proper-time scheme, we get by means of (A.3)

Ωq,sea
Λ =

Nc

2

∞∫
1/Λ2

ds
s

∞∫
−∞

dω
2π

(14)

×
∑
α

[
e−s(ω

2+ε2α) − e−s(ω
2+(ε0α)2)

]

= −Nc

2

∑
α

[
RE(εα, Λ) |εα| −RE(ε0α, Λ) |ε0α|

]

where εα (ε0α) are the eigenvalues of the quark hamiltoni-
ans h (h0) defined in (8, 9), and RE is the regularization
function

RE(ε, Λ) = − 1√
4π

Γ

(
−1

2
,
ε2

Λ2

)
(15)

with the incomplete Gammafunction Γ (x, a). Notice that
the degeneration with respect to the color degree of free-
dom is explicitly taken into account by the factor Nc and
included neither in the trace Tr nor in the sum over α.

The medium contribution to the quark part of the
canonical potential (12) is finite and will not be regular-
ized. One gets by means of (A.1–A.5)

Ωq,med(T, µ) = −NcTTr ln
D(µ)
D0(µ)

+Nc lim
T→0

TTr ln
D(0)
D0(0)

= −NcµB
sea −NcT

∑
α

ln
1 + e−sign(εα) (εα−µ)/T

1 + e−sign(ε0α) (ε0α−µ)/T
.(16)

The medium contribution depends on the thermal occu-
pation probability of the various quark levels which are
controlled by temperature and chemical potential. The
quantity

Bsea = −
∑
α

sign(εα)
2

(17)

describes the baryon number of the Dirac sea for the soli-
tonic field. Usually the number of quark levels with pos-
itive and negative energy are equal and Bsea vanishes. It
differs from zero only if the meson field is strong enough
to pull down one or more quark levels from the positive
continuum into the negative energy region. This happens
at rather large interaction strength G corresponding to
vacuum constituent quark masses M >∼ 700 MeV, and we
shall not consider this case here.

Customarily one treats the contribution of the valence
level (α=val) to the medium part (16) separately, ascribes
occupation number one to this level (ñεval =1) and leaves
it empty in the homogeneous medium (ñε0val =0) [9]. This
is the simplest way to realize a soliton with baryon num-
ber one in a cold medium. However, the hole in the ho-
mogeneous configuration has serious consequences for the
size of the iso-rotational moment of inertia which will be
studied in Sect. 5.2.

The rule to regularize only the sea contribution to the
quark determinant should be considered as an ingredi-
ent of the model. It does not reproduce the correct limit
T→∞ but dealing with a low-energy model we need not
consider this case. In our case, the regularization proce-
dure would have a negligible effect on the medium contri-
bution since the cut-off is larger than chemical potential
and temperature (Λ > µ + T ). Moreover it simplifies the
model considerably since it decouples the regularization
procedure from temperature and density dependence.

The classical meson fields σ and π minimize the grand
canonical potential (10)

δΩ(T, µ)
δσ(r)

= 0 and
δΩ(T, µ)
δπ(r)

= 0 (18)



        

174 M. Schleif, R. Wünsch: Thermodynamic properties of the SU(2)f chiral quark–loop soliton

leading to the equations of motion

σ(r) = m−G
〈〈
q̄(r) q(r)

〉〉
, (19)

π(r) = −G
〈〈
q̄(r) iγ5τ ·r̂ q(r)

〉〉
. (20)

In general, the equations of motion can only numerically
be solved since the thermal expectation values 〈〈. . .〉〉 on
the right sides depend functionally on the fields on the
left sides. Expectation values of currents such as in (19,
20) will be evaluated in Sect. 3. A particular solution of
the equations of motion is given by homogeneous fields
σ(r) ≡ σ0 and π(r) ≡ 0 where σ0 has to fulfill the gap
equation which follows from (19). A constant sigma field
acts as a mass on the quarks and σ0(T, µ) is identified with
the constituent quark mass M∗. Its value M at T =µ=0
is the only free parameter of the model, which can vary
within reasonable limits (see e. g. [2]). It determines the
strength G of the quark-quark interaction in the initial
NJL lagrangian. Keeping G fixed the constituent massM∗
for finite values of temperature and density is uniquely
determined by the gap equation. We chose M =420 MeV
in the numerical calculations. This value reproduces the
experimental ∆-nucleon splitting.

A solution of the equation of motion is called a self-
consistent field configuration since one considers not only
the explicit dependence of Ω (10) on the meson fields via
Ωm but also the dependence via energy spectrum {εα} of
the quarks which enters the parts Ωq,sea

Λ (13) and Ωq,med

(16). Restricting the meson fields to the chiral circle σ and
π fields are not independent of each other and equations
(19, 20) can be replaced by a single one e. g. for the chi-
ral angle θ(r) (see e. g. [19]). We consider hedgehog fields
with winding number one characterized by the boundary
conditions θ(r=0) = −π and θ(r→∞) = 0.

The lack of confinement in the NJL model forces us to
exclude the valence level from the thermal equilibrium and
to keep its occupation probability fixed to one indepen-
dently of temperature and chemical potential as proposed
in [7]. The valence quarks play a crucial role for the exis-
tence of self-consistent solitonic field configurations. Only
the valence quarks yield a spatially restricted negative
contribution to the expectation value on the right side of
the equation of motion (19) leading to a well in the σ field.
The soliton is stable if the well is deep enough to bind the
valence quarks. If one occupies the valence level according
to the thermal occupation probability, which is smaller
than one, the resulting well binds the quarks weaker, and
– starting from a critical temperature – a homogeneous
field with free quarks is the only self-consistent solution of
the equations of motion. This happens already at temper-
atures around 100 MeV far away from the expected tran-
sition point to the quark plasma. Keeping the occupation
number of the valence level fixed the plasma transition
takes place at reasonable temperatures around 180 MeV.
This transition does not coincide with the restoration of
chiral symmetry indicated by the reduction of the con-
stituent quark mass M∗ to the value of the current mass
m. The constituent mass is only reduced to half of its
vacuum value when the soliton dissolves.
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Fig. 1. Region in the T −ρ0 plane where solitonic field config-
urations have been found for M =420MeV. The density ρ0 is
given in units of the normal nuclear density ρnm = 0.16 fm−3.
In the region below the broken line the self-consistent meson
fields exhibit pronounced oscillations outside the soliton in the
course of the iterative solution of the equation of motion

Figure 1 outlines that region in the T−ρ0 plane where
we have obtained stable, self-consistent solitonic field con-
figurations. The medium density ρ0 is related to T and µ
via (45). The region with temperatures T <∼ 75 MeV (be-
low the broken line in Fig. 1) has to be considered with
some caution since we performed our numerical calcula-
tions within a discrete basis [20] by introducing a box
with radius D. Below 75 MeV, the meson fields start to
oscillate during the iteration and the final results are very
sensitive to the box radius. The finite box radius produces
an artificial spacing and shift of the quark levels which are
proportional to 1/D. Shift and spacing are important in
a transition region around the Fermi energy where the
occupation probability varies rapidly. The width of the
transition region is proportional to the temperature. In
the course of the iteration the levels in the sensitive tran-
sition region around the Fermi level change rapidly their
contribution to the mean field with a significant effect on
its shape. The calculation is stable if a larger number of
levels lies within the transition region, i. e. if the level spac-
ing is sufficiently smaller than the transition region. At low
temperatures the spacing has to be rather small and the
basis for a reliable calculation must be large. In this way
the capacity of the computer determines a lower temper-
ature limit for a reliable calculation. We used a box with
radius D = 18/M∗ which restricts ourselves to tempera-
tures above the broken line in Fig. 1. In contrast to finite
medium density a calculation at vanishing density is not
affected by the level spacing. In this case, the Fermi en-
ergy lies in the middle of the energy gap between ±M∗
and there are no quark levels in the sensitive region.

At temperatures and densities above the solid line in
Fig. 1 a solitonic solution of the equations of motion (19,
20) has not been found. Here the self-consistent meson
field is too shallow to bind quarks.

Knowing the grand canonical potential Ω the free en-
ergy F of the soliton can be obtained by means of a Leg-
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endre transformation replacing the independent variable
µ by the baryon number B = −∂Ω/(Nc ∂µ). The internal
energy is obtained by an additional Legendre transfor-
mation from the dependence on temperature to entropy
S = −∂Ω/∂T . Analogously to the effective action we split
internal and free energy into mesonic, regularized quark-
sea and quark-medium contributions and subtract the cor-
responding energies of the homogeneous medium

E = Em + Eq,sea
Λ + Eq,med , (21)

F = Fm + F q,sea
Λ + F q,med . (22)

Since mesonic and sea contributions to the grand canoni-
cal potential are independent of T and µ we have

Em = Fm = Ωm (23)

and
Eq,sea
Λ = F q,sea

Λ = Ωq,sea
Λ . (24)

The medium contributions are given by

Eq,med =
[
1− T ∂

∂T
− µ ∂

∂µ

]
Ωq,med(T, µ) (25)

= Nc

∑
α

[
ñεα(T, µ) εα − ñε0α(T, µ) ε0α

]
and

F q,med =
[
1− µ ∂

∂µ

]
Ωq,med(T, µ) (26)

= Nc

∑
α

[
T ln

(
1−sign(εα) ñεα(T, µ)

)
+ µ ñεα(T, µ)

]
−Nc

∑
α

[
T ln

(
1−sign(ε0α) ñε0α(T, µ)

)
+ µ ñε0α(T, µ)

]
where we have introduced the modified occupation num-
ber

ñεα(T, µ) =
1

1 + e(εα−µ)/T
−Θ

(
−εα

)
(27)

=
sign(εα)

1 + esign(εα) (εα−µ)/T

which describes the thermodynamical probability to find
an occupied level at positive energy εα and a hole at nega-
tive energy, respectively. The latter is supplied with a mi-
nus sign. For the completely occupied Dirac sea without
any additional quarks above it we have ñεα(0, 0) = 0 ∀α.

3 Baryon number, density and chemical
potential

Now let us investigate the baryon number B of the self-
consistently determined solitonic field and their spatial

distribution ρ(r). For that aim we consider thermal ex-
pectation values 〈〈O〉〉 of one-body quark operators

O =
∫

d3r q†(r)O q(r) (28)

where O is a time-independent operator acting in the
Dirac and/or flavor (isospin) space. The baryon number
is obtained with O=1/Nc.

To calculate thermal expectation values of one-body
quark operators (28) we define a generating function

Ωq
(Λ)(T, µ;κ) = −NcTTr(Λ) ln

D(µ;κ)
D0(µ;κ)

(29)

= Ωq,sea
(Λ) (κ) +Ωq,med(T, µ;κ)

given by the canonical quark potential (12) with the in-
verse propagators D(0)(µ) replaced by

D(0)(µ;κ) = D(0)(µ)− κO = ∂τ + h(0) − µ− κO . (30)

Restricting the meson fields to their classical values the
mesonic part of the grand canonical potential does not
influence expectation values. We shall use both the unreg-
ularized version

Ωq,sea(κ) = −Nc lim
T→0

TTr ln
D(0;κ)
D0(0;κ)

(31)

and the regularized version Ωq,sea
Λ (κ) of the sea contribu-

tion to (29) with Tr replaced by TrΛ. The medium con-
tribution to the extended canonical potential (29) is given
by

Ωq,med(T, µ;κ) (32)

= −NcTTr ln
D(µ;κ)
D0(µ;κ)

+Nc lim
T→0

TTr ln
D(0;κ)
D0(0;κ)

.

Expectation values of an operator (28) can be expressed
by

〈〈O〉〉 = −
dΩq

(Λ)(T, µ;κ)

dκ

∣∣∣∣∣
κ=0

= 〈O〉sea(Λ) + 〈〈O〉〉med (33)

with the unregularized sea contribution

〈O〉sea ≡ − dΩq,sea(κ)
dκ

∣∣∣∣
κ=0

(34)

= −Nc lim
T→0

TTr
[(
D(0)−1−D0(0)−1

)
O
]

= −Nc

2

∑
α

[
sign(εα)Oα−sign(ε0α)O0

α

]
and the medium contribution

〈〈O〉〉med ≡ − dΩq,med(T, µ;κ)
dκ

∣∣∣∣
κ=0

(35)

= Nc

∑
α

[
ñεα(T, µ)Oα − ñε0α(T, µ)O0

α

]
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with the modified occupation numbers ñ
ε
(0)
α

(T, µ) (27) and
the matrix elements

O(0)
α =

〈
α(0) |O|α(0)

〉
=
∫

d3rΦ(0) †
α (r)OΦ(0)

α (r) (36)

of the operator O with the normalized eigenfunctions
Φ

(0)
α (r) of the hamiltonian h (h0). Sea contributions such

as expression (34) are defined as expectation values at zero
temperature and we use the single brackets instead of the
double ones which stand for a thermal expectation value.
In fact, the sea contribution is not completely independent
of T and µ but depends on them via the self-consistent
mean fields σ and π. Using the regularized version of the
sea contribution (31) we get the regularized expectation
value

〈O〉seaΛ = −Nc

2

∑
α

[
Rm(εα, Λ)Oα−Rm(ε0α, Λ)O0

α

]
. (37)

In the proper-time scheme, the regularization function is
given by

Rm =
sign(ε)√

π
Γ

(
1
2
,
ε2

Λ2

)
= erfc (ε/Λ) (38)

with the complementary error-function erfc(x) =
2x√
π

∫∞
1

dt e−t
2x2

. Inserting O=1/Nc one gets the solitonic
baryon number

B =
〈〈 1
Nc

∫
d3r q†(r) q(r)

〉〉
(39)

= Bsea +
∑
α

[
ñεα(T, µ)− ñε0α(T, µ)

]
with the unregularized sea contribution introduced in (17).
The same expression is obtained if one starts from the
grand canonical potential (10) and uses the thermody-
namical relation B=−∂Ω/(Nc ∂µ) keeping in mind that
the meson fields have to minimize the potential (18).

To investigate the properties of a soliton which is em-
bedded in a medium with given density ρ0 we have to es-
tablish a relation between T, ρ0 and µ. This will be done
below (45). Knowing T and µ one can determine the soli-
tonic field by means of the equations of motion (19, 20).
Its baryon number (39) varies with T and µ and is dif-
ferent from one in general. The usual method to get a
state with definite baryon number by minimizing the free
energy can not be applied since it changes the chemical po-
tential which has already uniquely been determined by the
medium density ρ0. In [7], a chemical potential µs for the
solitonic field configuration was introduced, which differs
from the chemical potential µ of the homogeneous field,
in order to fix the solitonic baryon number exactly to one.
However, such a soliton is spatially unlimited since a finite
fraction of the baryon number is uniformly spread over the
whole space. To elucidate this statement we consider the
baryon density which is defined as the expectation value
of the current

O(r) = q†(r)O q(r) . (40)

with O = 1/Nc. The expectation value of currents (40)
with a time-independent operator O can be treated in a
way similar to the expectation value of the operator (28).
One defines a generating functional Ωq[κ](T, µ) by for-
mally the same expression (29) but with a space-dependent
function κ(r) instead of the parameter κ. The correspond-
ing expectation values are obtained by (34–38) with the
derivative d/dκ replaced by the functional derivative
δ/δκ(r) and the matrix elements

O(0)
α (r) = Φ(0) †

α (r)OΦ(0)
α (r) (41)

instead of the matrix elements (36). The expectation val-
ues in the equations of motion (19, 20) are of the same
type and can be obtained with O=γ0 and O = iγ0γ5τ ·r̂,
respectively. Applied to the baryon density we get

ρ(r) = −T
1/T∫
0

dτ
〈
rτ
∣∣ tr[D(µ)−1−D0(µ)−1

]∣∣ rτ〉(42)

= ρsea(r) + ρmed(r)

with

ρsea(r) = −1
2

∑
α

[
sign(εα)Φ†α(r)Φα(r) (43)

−sign(ε0α)Φ0 †
α (r)Φ0

α(r)
]
,

ρmed(r) =
∑
α

[
ñεα(T, µ)Φ†α(r)Φα(r) (44)

−ñε0α(T, µ)Φ0 †
α (r)Φ0

α(r)
]
.

Integrating over the whole space we recover the total baryon
number (39).

First let us consider the homogeneous medium char-
acterized by the hamiltonian h0 with a constant σ field
σ0 =M∗ and vanishing π field. The corresponding eigen-
functions are plane waves characterized by the momentum
vector k and normalized to one particle in the volume V.
The sea contribution (43) vanishes, and the sum

∑
α

in

the medium contribution (44) has to be replaced by an
integral 4V

∫
d3k

(2π)3 taking into account both signs of the

energies ±εk with εk =
√
k2+M∗ 2, and spin and isospin

degeneration as well. One gets

ρ0 =
2
π2

∞∫
0

dk k2
[
ñεk(T, µ) + ñ−εk(T, µ)

]
(45)

=
2
π2

∞∫
0

dk k2

[
1

1+e(εk−µ)/T
− 1

1+e(εk+µ)/T

]
.

Equation (45) establishes a relation between medium den-
sity and chemical potential and is used to determine µ for
a given medium density ρ0 and temperature T . It is also
used to test the accuracy of the numerical procedure and
to determine the necessary size of the basis. For that aim
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Fig. 2. Baryon density distribution of the soliton (full lines)
normalized to baryon number B = 4π

∫
dr r2ρ(r) as a function

of the distance r from the center. The broken lines show the
reproduction of the medium density by the discrete basis. The
contributions of the Dirac sea are given by the dotted lines.
The right end of the curves indicates the size of the box (D=
18/M∗), which is different in all three cases

we evaluate the baryon density for a homogeneous σ field
by means of (44) within the discrete basis and check the
agreement with the result (45) obtained in the momentum
basis. We increase the basis until sufficient agreement is
reached. The result is shown in Fig. 2 (dashed lines). Apart
from a region close to the edge of the box, which is suffi-
ciently far away from the soliton, the medium density is
well reproduced by the discrete basis with a finite number
of states.

The size of the various contributions to the solitonic
baryon density (42) and their modification when changing
the medium parameters from the vacuum to values close to
the border of instability is illustrated in Fig. 2. The domi-
nating contribution results from the valence part (α = val)
of the medium contribution (44) giving rise to the bump
around the center of the soliton. The residual terms in
the medium contribution describe the polarization of the
Fermi sea. Their contribution to the density is too small to
be visible in Fig. 2. However, this contribution is located
at larger distances than the valence contribution and has
a remarkable influence on the soliton radius. Moreover it
depends on temperature and density and contributes to
the total baryon number. It is just this part of the total
baryon number which is responsible for the deviation from
one. The contribution (43) resulting from the polarization
of the Dirac sea (dotted lines) modifies the density dis-
tribution but does not contribute to the baryon number
(39). Figure 2 illustrates nicely the swelling of the soli-
ton when increasing temperature and density. The mean-
square radius of the soliton will systematically be studied
in Sect. 4.

Now let us consider the consequences of introducing
a chemical potential µs = µ + δµ for the soliton which
is different from the µ for the homogeneous background

field. In this case (42) has to be replaced by

ρ(r) = −T
1/T∫
0

dτ
〈
rτ
∣∣ tr[D(µs)−1−D0(µ)−1

]∣∣ rτ〉 .
(46)

In the asymptotic region far away from the center of the
soliton (r À R) we can replace the quark propagator
D(µs)−1 by the propagator D0(µs)−1 in the homogeneous
field with the chemical potential for the soliton. This can
be proven by expanding D(µs)−1 in (46) around D0(µs)−1

(gradient expansion). As a result, the propagators differ
only by terms which are proportional to the deviations of
σ and π from their asymptotic values and by terms propor-
tional to their derivatives which vanish in the asymptotic
region. So we get

ρ(rÀR) = −T
1/T∫
0

dτ
〈
rτ
∣∣ tr [D0(µs)−1−D0(µ)−1

]∣∣ rτ〉
=
∑
α

[
ñε0α(T, µs)−ñε0α(T, µ)

]
Φ0 †
α (r)Φ0

α(r)(47)

with the result that the soliton density vanishes at large
distances from the center only if the chemical potentials µ
and µs are equal. Introducing a different chemical poten-
tial µs one modifies the occupation probability for quarks
in unbound states which contribute to observables at large
distances. As a result, a finite fraction of the baryon num-
ber (and of other observables as well) is uniformly spread
over the whole space. The root mean square (r.m.s.) radius
R̄∗ defined by

R̄∗ =

√∫
d3r r2ρ(r)∫
d3r ρ(r)

(48)

is infinitely large. The occurrence of unbound quark states
below critical temperature and density is a consequence of
the missing confinement in the NJL model. The situation
is different for an isolated soliton at T =0. Here one gets
the soliton by adding 3 quarks onto the bound valence
level which does not contribute to the density at large
distances. As soon as T >0 and/or %0>0 unbound quark
levels are involved and the lack of confinement becomes
evident.

The difference δµ between solitonic and medium chem-
ical potential which is necessary to ensure B=1 amounts
to a few hundreds of keV and decreases as 1/D3 with in-
creasing box radius D. The resulting solitonic density at
large radii decreases correspondingly. It vanishes in the
limit D → ∞ and the effect might be considered as a
box effect. Unfortunately that is not true. Independently
of the box size a finite fraction of the baryon number
is homogeneously spread outside the soliton, i. e. we have∫∞
R dr r2ρ(r) 6= 0 outside any sphere with radiusR around

the soliton, and the mean-squared radius (48) diverges. In
[7], the (small) deviation from the medium density outside
the soliton was simply neglected, while it was taken into
account when calculating the baryon number B. Similar
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Fig. 3. Total internal (E) and free energy (F ) of the soliton as
a function of the medium temperature T for various medium
densities ρ0 (ρnm = 0.16 fm−3: normal nuclear density). The
dotted lines show the contribution Eval of the valence quarks
to the internal energy and the dashed lines represent the en-
ergy 3M∗ of 3 free constituent quarks. The calculation was
performed with a constituent quark mass M=420MeV in vac-
uum. The lowest right part shows the baryon number B as a
function of T for the densities considered in the other parts of
the figure

problems will occur when calculating the moment of in-
ertia in Sect. 5. That is why we tolerate a baryon number
slightly different from one and do not introduce different
chemical potentials ensuring that any local expectation
value of the soliton vanishes asymptotically.

There is a promising method in the literature which
might be applied to fix the baryon number of the soliton
to one without changing the chemical potential. In [21]
the regularized version of the baryon number in vacuum,
which differs also from one, could be constrained after in-
troducing the chiral radius field as an additional dynam-
ical degree of freedom. In the center of the soliton, this
radius field deviates noticeably from the chiral circle. Ad-
ditionally, the constraint on the baryon number prevents
the soliton with a space dependent radius field from col-
lapsing. This method will be investigated in a forthcoming
paper.

4 Energy and radius of the soliton

In this section we display and discuss energy, baryon num-
ber and r.m.s. radius of the soliton defined in Sect. 2. Fig-
ure 3 shows internal and free energy as a function of the
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Fig. 4. Root mean-square radius R̄∗ of the soliton as a func-
tion of the medium temperature T for various values of the
medium density ρ0 in units of the normal nuclear density
ρnm = 0.16 fm−3 calculated for M = 420MeV. The lower part
shows the deviation from Brown-Rho scaling. R̄∗ and f∗π are
radius and pion decay constant at given medium temperature
T and density ρ0 while R̄ and fπ denote the corresponding
values at T = ρ0 =0

medium temperature T for several densities ρ0. While the
internal energy represents the total energy which is nec-
essary to generate the soliton the free energy disregards
that part of the energy which is automatically delivered
by the heat bath.

The first striking feature we want to mention is the rel-
ative independence of the valence quark energy on temper-
ature and medium density, and hence on the constituent
quark mass M∗. The latter determines the depth of the
well in the solitonic σ field which binds the valence quarks.
The decreasing depth at growing T and/or ρ0 is nearly
compensated by a larger radius of the self-consistently de-
termined potential well with the result that the valence
level is kept at an almost unchanged energy of roughly
500/3 MeV . The solitonic solution of the equations of mo-
tion disappears if the valence level comes close to the top
of the well in the σ field. Comparing total soliton energy
with the mass of 3 free constituent quarks we notice that
the soliton energy depends more weakly on T and ρ0 than
the constituent quark mass.

Comparing the free soliton energy with the results of
[7] we notice differences up to several hundred MeV es-
pecially at larger medium density. They are to attribute
to different assumptions concerning the occupation of the
valence level in the homogeneous medium and to the two
different chemical potentials used in [7]. On the other
hand, our baryon number which decreases with increasing
temperature superimposes the T dependence of the soli-
ton energy. Dividing the free energy by the baryon num-
ber it exhibits a slight increase with increasing temper-
ature.

The r.m.s. radii R̄∗ (48) displayed in Fig. 4 indicate
a swelling of the soliton when temperature and density
increase. At low temperature the soliton swells roughly
linearly with increasing medium density. The soliton at
normal nuclear density is by roughly 20 percent larger
than in vacuum. Above 125 MeV the r.m.s. radius grows
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continuously towards the deconfinement transition. There
are two different reasons for the modification of the soliton
size in the medium: the increase of the radius of the self-
consistent mean field and the polarization of the medium
quarks around the soliton. The first effect is rather pro-
nounced and nearly proportional to 1/M∗. The polar-
ization modifies the baryon density very slightly but at
rather large distances from the center of the soliton and
has therefore a noticeable influence on the mean-square
radius. The effect is positive at lower temperatures and
negative at high temperatures. It raises the dependence
of the r.m.s. radius on the medium density and reduces
its dependence on the temperature. A comparison with
the r.m.s. radii obtained in [7] is difficult because of the
finite baryon density outside the soliton which inevitably
emerges in a model with two different chemical potentials.
To get a finite soliton radius this part was obviously ig-
nored. In contrast to [7] we get always a larger radius if
the medium density increases for any temperature.

The lower part of Fig. 4 illustrates the deviation from
the Brown-Rho scaling [22] which predicts R̄/R̄∗≈f∗π/fπ.
Apart from the immediate vicinity of the deconfinement
transition the deviation does not exceed 10 percent.

5 Quasi-classical energy corrections

The soliton considered so far exhibits several undesired
properties which do not allow a direct comparison with the
nucleon or other baryons. Due to the mean-field approx-
imation the translational symmetry is violated and the
soliton energy is contaminated by spurious center-of-mass
motion. We estimate the spurious part of the soliton en-
ergy which is connected with quantum fluctuations around
the artificially fixed position of the soliton by means of
quasi-classical methods and subtract it from the total en-
ergy. The same is done for the rotational degrees of free-
dom where the restriction to hedgehog configurations in-
troduces an alignment of the isospin of the soliton inducing
spurious fluctuations as well. Moreover we introduce a col-
lective rotation of the soliton as a whole in order to equip
it with definite values of spin and isospin and add the cor-
responding rotational energy to the total soliton energy
giving rise to a mass difference between nucleon and ∆
isobar. Rotations in space and isospace are not indepen-
dent of each other since the total isospin of the hedgehog
soliton is directed opposite to its spin. Fluctuations and
rotational energies in both spaces are equal and have to
be considered only once. We perform our calculation in
isospace which can simpler be treated.

The perturbative quasi-classical approach used for the
determination of spurious translational and rotational con-
tributions to the soliton energy has been adopted from
low-energy nuclear physics where it is denoted as push-
ing and cranking approach [10], respectively. The same
correction terms can be derived if one includes boosted
and rotating meson fields in the stationary phase approx-
imation, which leads to the effective action of the model
[2].

First we consider fluctuations of the total soliton mo-
mentum P =

∫
d3r q†(r)p q(r) which are described by the

dispersion 〈〈(
∆P

)2〉〉 ≡ 〈〈P 2
〉〉
−
〈〈
P
〉〉2

. (49)

To evaluate expectation values of P and P 2 we use the
regularized version of the extended canonical quark poten-
tial (29-38) with κO=v ·p. It describes the grand canon-
ical potential in a frame boosted with velocity v relative
to the rest frame of the soliton. On the analogy of (33)
the expectation value is given by

〈〈P 〉〉 = − ∂Ωq
Λ(T, µ;v)
∂v

∣∣∣∣
v=0

(50)

= −NcTTrΛ
[ (
D(µ)−1−D0(µ)−1

)
p
]

= 0 .

It vanishes for any time-independent hamiltonian h.
Squares like P 2 of a one-body operator (28) can be decom-
posed into a one-body operator

[
P 2
]
(1)

=
∫

d3r q†(r)p2 q(r)

and a normal ordered two-body operator
[
P 2
]
(2)

. The ex-
pectation values of the latter can be expressed by the sec-
ond derivative of the extended canonical potential (29)
and the product of two one-body expectation values. We
get

〈〈
P 2
〉〉

=
〈〈[
P 2
]
(1)

〉〉
+
〈〈
P
〉〉2− T ∂2Ωq

Λ(T, µ;v)
∂v · ∂v

∣∣∣∣
v=

. (51)

Introducing the inertial mass tensor

Mik(T, µ) = − ∂2Ωq
Λ(T, µ;v)
∂vi∂vk

∣∣∣∣
v=

=M(T, µ) δik , (52)

which is diagonal for spherically symmetric solitons and
has identical matrix elements, we get for the dispersion
(49) 〈〈

(∆P )2
〉〉

=
〈〈[
P 2
]
(1)

〉〉
+ 3TM . (53)

The minus sign in the mass definition (52) results from
the anti-hermitian character of the euclidean velocity v.
Equation (52) defines the inertial soliton mass by the re-
sponse of the grand canonical potential to a boost at fixed
values of T and µ. Since the variation of Ω at fixed T and
µ is equivalent to the variation of the free energy (22)
at fixed T and baryon number B, and also equivalent to
the variation of the internal energy (21) if B and entropy
S = −∂Ω/∂T are fixed, we can rewrite (52) accordingly.
However, the determination via Ω is the most appropriate
one in our case since we have an explicit representation of
the grand canonical potential on its variables T and µ.
That is not the case for internal (21) and free energy (22).

In the non-relativistic limit, the dispersion (53) corre-
sponds to the following energy of the translational fluctu-
ations of the soliton

Efl
trans =

〈〈
(∆P )2

〉〉
2M =

〈〈[
P 2
]
(1)

〉〉
2M +

3
2
T . (54)
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While the second term describes thermal fluctuations of
the soliton mass center in a medium with T > 0 the first
term represents the energy of the unphysical quantum
fluctuations of the mass center which has to be eliminated
from the total soliton energy. Figure 5 displays this en-
ergy as a function of medium temperature and density.
The main contribution to the center-of-mass energy stems
from the valence quarks which are confined by the well
in the mean field. The calculated reduction of Ecmm with
increasing temperature can be explained by the swelling
of the soliton in accordance with Heisenberg’s uncertainty
principle. But there is only a loose relation between center-
of-mass energy and r.m.s. radius (Fig. 4) since the soliton
radius incorporates not only the modified mean field but
also the medium polarization.

After an equivalent consideration for the dispersion of
the isospin operator T =

∫
d3r q†(r) t q(r) , where t =

τ/2 denotes the single-particle isospin operator, we get
by means of the generating function (29) with κO=ω ·t

Efl
rot =

〈〈
(∆T )2

〉〉
2J =

〈〈[
T 2
]
(1)

〉〉
2J +

3
2
T (55)

for the energy of the rotational fluctuations with the iso-
rotational moment of inertia

Jik(T, µ) = − ∂2Ωq
Λ(T, µ;ω)
∂ωi∂ωk

∣∣∣∣
ω=

= J (T, µ) δik . (56)

The moment of inertia is diagonal for symmetry reasons
and has identical diagonal elements. The energy of a soli-
ton rotating semi-classically in isospace with isospin quan-
tum number T and moment of inertia J is given by

ETcrank =
T (T +1)

2J . (57)

The corrected energy of a soliton with isospin T and spin
J=T is obtained by subtracting the energy of the spurious
quantum fluctuations (first term in (54, 55)) and adding

the cranking energy (57) to the soliton energy (21)

ETcorr = E −
〈〈[
P 2
]
(1)

〉〉
2M −

〈〈[
T 2
]
(1)

〉〉
2J +

T (T +1)
2J . (58)

The difference between the masses of ∆ isobar (T =3/2)
and nucleon (T =1/2) is then given by

∆E∆N ≡ ET=3/2
corr − ET=1/2

corr =
3

2J . (59)

Evaluating the corrected soliton energy (58) the expec-
tation value of the one-body operator

[
P 2
]
(1)

has to be
calculated numerically using (33–38) with O=p2 and the
regularized sea contribution (37). The expectation value
of the corresponding isospin operator can analytically be
determined since the single-particle expectation values of
t2 are the same for all quark levels independently of the
meson fields

(〈
α
∣∣t2∣∣α〉=〈α0

∣∣t2∣∣α0
〉
=1/2(1/2+1)

)
. Hence

most of the contributions to the expectation value cancel
out each other and we get

〈〈[
T 2
]
(1)

〉〉
= NcB

1
2

(
1
2

+ 1
)

=
9
4
B . (60)

The inertial parameters M and J will be determined in
the subsequent subsections.

5.1 Inertial soliton mass

In this subsection, we show that the inertial mass (52) of
the soliton is identical with its internal energy (21) and
need not be calculated separately

M = Em + Eq,sea
Λ + Eq,med = E . (61)

Assuming spherical symmetry we get by means of the
derivations in appendix B, which result in (B.11, B.23),
for the inertial soliton mass

M =
1
3

∑
i

Mii = −1
3
∂2Ωq

Λ(T, µ;v)
∂v ·∂v

∣∣∣∣
v=

(62)

=Msea
Λ +Mmed

with

Msea
Λ ≡ −1

3
∂2Ωq,sea

Λ (v)
∂v ·∂v

∣∣∣∣
v=

(63)

= −Nc

∞∫
1/Λ2

ds lim
T→0

TTr
[
e−sA(0)

×
(p2

3
+ ∂2

τ +
i
6
γ ·∇(σ+iγ5τ ·r̂ π)

)
− e−sA0(0)∂2

τ

]
and
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Mmed ≡ −1
3
∂2Ωq,med(T, µ;v)

∂v ·∂v

∣∣∣∣
v=

(64)

= −NcTTr
[
A(µ)−1

(p2

3
+ ∂2

τ +
i
6
γ ·∇(σ + iγ5τ ·r̂ π)

)
−A0(µ)−1∂2

τ

]
+Nc lim

T→0
TTr

[
A(0)−1

(p2

3
+ ∂2

τ +
i
6
γ ·∇(σ + iγ5τ ·r̂ π)

)
−A0(0)−1∂2

τ

]
−NcTTr

[
A(µ)−1µ

(
(h− µ) +

i
3
r ·[h,p]

)
−A0(µ)−1µ(h0 − µ)

]
with A(0)(µ) defined in (B.1). Now we exploit the invari-
ance of the potential Ω with respect to an arbitrary vari-
ation of the meson fields σ and π around the stationary
point in accordance with the equation of motion (18). A
variation which is in accordance with both the spherical
hedgehog symmetry and the chiral circle respecting the
boundary conditions δσ=0 and δπ=0 at small and large
separations from the center of the soliton is given by

δσ = ε rk∂kσ and δπ = ε rk∂kπ = ε rk∂k(r̂ π)
(65)

with an infinitesimal variation parameter ε. Such a varia-
tion of the meson fields gives rise to the following changes
δΩm, δΩq,sea

Λ and δΩq,med in the mesonic and quark con-
tributions to the grand canonical potential (10)

δΩm

ε
= −m

G

∫
d3r

δσ(r)
ε

(66)

= −m
G

∫
d3r rk∂kσ = 3

m

G

∫
d3r (σ − σ0) = −3Ωm ,

δΩq,sea
Λ = −Nc

2

∞∫
1/Λ2

ds lim
T→0

TTr
[
e−sA(0) δh2

]
, (67)

δΩq,med = −Nc

2
TTr

[
A(µ)−1 δ(h− µ)2

]
(68)

+
Nc

2
lim
T→0

TTr
[
A(0)−1δh2

]
with

δh

ε
= β

(
δσ

ε
+ iγ5τ ·

δπ

ε

)
=β r ·∇(σ + iγ5τ ·r̂ π)(69)

= −ir ·[h,p] = α·p− i[h, r ·p] ,

δh2

ε
=
{
h,
δh

ε

}
(70)

= 2p2 + iγ ·∇(σ + iγ5τ ·r̂ π)− i
[
h2, r ·p

]
,

δ(h− µ)2 = δh2 − 2µδh . (71)

Now we introduce first δh, δh2 and δ(h − µ)2 and then

δΩq,sea
Λ and δΩq,med into (62-64) and get by means of the

equation of motion (18) and the variation (66) of Ωm

M = Ωm −Nc

∞∫
1/Λ2

ds lim
T→0

TTr
[(

e−sA(0) − e−sA0(0)
)
∂2
τ

]

−NcTTr
[
A(µ)−1

(
∂2
τ + µ(h−µ)

)
(72)

−A0(µ)−1
(
∂2
τ + µ(h0−µ)

) ]
+Nc lim

T→0
TTr

[(
A(0)−1 −A0(0)−1

)
∂2
τ

]
.

The agreement ofM with the internal energy (21) can now
be established by means of (A.10–A.13) by comparing the
various terms in (72) with the components (23–25) of the
internal energy.

The equivalence of inertial soliton mass and total mean-
field energy is by far not trivial despite the Lorentz-invar-
iance of the initial NJL Lagrangian. The approximations,
the particular regularization scheme applied only on the
Dirac-sea contribution and the presence of the medium
might disturb the equivalence of inertial mass and total
internal energy.

5.2 Iso-rotational moment of inertia and ∆-nucleon
mass splitting

The iso-rotational moment

J =
1
3

∑
i

Jii = −1
3
∂2Ωq

Λ(T, µ;ω)
∂ω ·∂ω

∣∣∣∣
ω=

(73)

= J sea
Λ + Jmed

consists of the components

J sea
Λ ≡ −1

3
∂2Ωq,sea

Λ (ω)
∂ω ·∂ω

∣∣∣∣
ω=

(74)

=
Nc

4

∑
αβ

[
RJ (εα, εβ ;Λ)

εα − εβ
〈α | τ3 |β 〉 〈β | τ3 |α 〉

−
RJ (ε0α, ε

0
β ;Λ)

ε0α − ε0β
〈
α0
∣∣τ3∣∣β0

〉〈
β0
∣∣τ3∣∣α0

〉]

with

RJ (εα, εβ ;Λ) (75)

=
Λ√
π

e−ε
2
β/Λ

2 − e−ε
2
α/Λ

2

εβ + εα
+

1
2

(
erfc(εα/Λ)− erfc(εβ/Λ)

)
and
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Fig. 6. Moment of inertia J (upper part) and ∆-nucleon mass
splitting ∆E∆N (lower part) as a function of the medium tem-
perature T for various values ρ0 of the density and constituent
quark mass M = 420MeV in vacuum. The lowest line in the
lower part shows the splitting for ρ0 =0.5ρnm obtained with the
assumption that the valence level is empty in the homogeneous
medium

Jmed ≡ −1
3
∂2Ωq,med(T, µ;ω)

∂ω ·∂ω

∣∣∣∣
ω=

(76)

= −NcTTr
[
D(µ)−1t3D(µ)−1t3 −D0(µ)−1t3D0(µ)−1t3

]
+Nc lim

T→0
TTr

[
D(0)−1t3D(0)−1t3 −D0(0)−1t3D0(0)−1t3

]
=

Nc

4

∑
αβ

[
ñεβ−ñεα
εα−εβ

〈α | τ3 |β 〉 〈β | τ3 |α 〉

−
ñε0

β
−ñε0α

ε0α−ε0β
〈
α0
∣∣τ3∣∣β0

〉〈
β0
∣∣τ3∣∣α0

〉]
.

While the sea component (74) has been derived in [23]
the medium contribution (76) is obtained by means of (6,
7, A.1, A.2, A.8, A.9). Since the single-particle hamilto-
nian h0 of the homogeneous medium commutes with τ3
only diagonal elements with α0 = β0 contribute to the
corresponding terms in the inertial momenta (74, 76). Be-
cause of lim

ε′→ε
RJ (ε, ε′;Λ)/(ε − ε′) = 0 these terms vanish

in (74) and the homogeneous medium does not contribute
to sea component of the inertial moment. That is not true
for a calculation in the discrete basis [20] with boundary
conditions depending on the superspin quantum number.
Here we have numerically to determine the inertial mo-
ment of the homogeneous medium and to subtract from
the moment of the solitonic configuration.

Figure 6 illustrates the moment of inertia as a function
of medium temperature and density. At vanishing density,
the moment is nearly constant and increases remarkably
only in the neighborhood of the critical temperature at
185 MeV. At finite medium density, the increase starts ear-

lier. The main contribution to the moment of inertia comes
from transition matrix elements between the valence level
and an unoccupied level in its vicinity. At finite density,
the levels around the valence level are sufficiently occu-
pied by quarks representing the medium and the moment
of inertia is remarkably reduced in comparison to the vac-
uum (Pauli blocking). The resulting moment of inertia is
very small and the ∆N mass splitting (Fig. 6, lower part)
is huge at low temperature and finite density. This is an
obvious shortcoming of the model describing the medium
as gas of constituent quarks. In a more realistic picture,
the medium quarks should be bound in solitons and the
corresponding transition matrix elements are not blocked
to that degree. At higher temperature, the probability of
finding a hole close to the valence level increases. Here the
blocking effect diminishes. If one keeps the valence level
of the homogeneous medium free (ñε0val = 0) as in [7,9]
one gets big transition matrix elements to that level, and
the moment of inertia is huge. The resulting ∆N split-
ting is negligibly small already at half of normal nuclear
density (lowest line in Fig. 6) and further decreases if the
density grows. That is another reason why we discarded
this method of tailoring a B=1 soliton.

The quasi-classical energy corrections in (58) represent
approximations to the first terms in an 1/Nc expansion.
While the quantum fluctuations behave like (1/Nc)0 the
cranking term is proportional to 1/Nc. So it is not surpris-
ing that the mass shift at ρ0 =0 obtained in our approach
exhibits a similar dependence on T as the shift evaluated
in heavy baryon chiral perturbation theory (HBχPT) us-
ing a 1/Nc expansion [24]. The shift is negative for nucle-
ons and positive for ∆ isobars and has the same absolute
value in our approach apart from a term which is propor-
tional to the deviation of the baryon number from one.
The identity of the absolute values of the mass shifts for
nucleon and ∆ isobar is the result of the restriction to 2
quark flavors in contrast to the HBχPT calculation which
includes strange quarks. At T ≈130 MeV the ∆N splitting
is reduced by only 5% in comparison to 20% in [24]. Again
a partial blocking of quark levels in the neighborhood of
the valence level prevents a larger moment of inertia and
reduces the decrease of the ∆N splitting at finite temper-
ature.

6 Energy of the nucleon

In Fig. 7, we display the corrected internal energy (58) and
the corresponding free energy in dependence on tempera-
ture and density of the medium for nucleons (T =1/2). In
the considered region, the baryon number varies between
1.2 and 0.8 as displayed in the lower right corner of Fig. 3.
To estimate the effect of the varying baryon number we
display the energy per baryon number on the right panel
of Fig. 7. We see that the variation in the baryon num-
ber has only a moderate influence on the corrected soliton
energy. The behavior of the soliton energy in dependence
on temperature and density differs remarkably from the
corresponding behavior of free constituent quarks (dotted
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Fig. 7. Total corrected internal (E) and free energy (F ) of
the nucleon as a function of the medium temperature T for 3
values of the medium densities ρ0 and constituent quark mass
M=420MeV in vacuum. The left panel shows the corrected en-
ergies for particles with the varying baryon numbers displayed
in Fig. 3. The corresponding energies per baryon number are
shown on the right panel

lines). While constituent quarks get lighter with increas-
ing temperature the soliton gets heavier. The dependence
on the medium density is weaker for solitons than for con-
stituent quarks.

The increase of the nucleon mass is mainly due to
the reduction of the center-of-mass energy (Fig. 5) which
shrinks from 350 MeV at T = 0 to 100 MeV close to the
critical temperature. This has to be taken into account if
one compares with calculations which do not consider this
spurious energy. A slight decrease of the nucleon mass at
higher temperature as e. g. observed in [25] is changed into
an increase by means of the center-of-mass energy. Center-
of-mass corrections do also reduce the density dependence
of the nucleon mass at low temperatures.

We should mention that the calculated nucleon mass
in vacuum is by roughly 200 MeV smaller than the ex-
perimental value. This is an obvious shortcoming of the
simple effective model and the approximations applied in
the course of the evaluation. For that reason the model
is preferably used for the evaluation of the splitting be-
tween the masses of different baryons. In that sense we
do not consider the absolute masses but their variation
in dependence on temperature and density. Furthermore
we use the experimental ∆-nucleon mass-splitting in vac-
uum in order to fix the only free parameter of the model
- the constituent quark mass in vacuum - to a value of
420 MeV .

7 Conclusions

We investigated the properties of a two-flavor NJL soliton
which is embedded in a medium of constituent quarks with
self-consistently determined constituent mass. Energy and
mass of the soliton are determined in mean-field approx-
imation with the restriction to hedgehog configurations
and to the chiral circle. To get a solitonic solution of the
corresponding equations of motion we have to fix the occu-
pation probability of the valence level independently of the
thermodynamical parameters of the medium. Otherwise
the soliton dissolves below 100 MeV already at densities
below the normal nuclear density. The expected critical
values of medium temperature and density are obtained
with the assumption that the occupation probability of
the valence level equals to one, the same value as assumed
for the soliton in vacuum.

Through lack of confinement the model does not allow
the construction of a localized soliton with fixed baryon
number as soon as medium temperature or density differ
from zero. Keeping the baryonic charge confined within a
finite radius around the soliton the baryon number of the
self-consistent field configuration varies between 0.8 and
1.2 in dependence on temperature and density. Fixing the
baryon number to a definite value by means of a chemi-
cal potential which differs from the chemical potential of
the medium a part of solitonic baryon charge is uniformly
distributed over the whole space. This is an obvious con-
tradiction to the definition of a soliton.

To remove spurious contributions to the mean-field en-
ergy and to equip the soliton with the quantum numbers of
nucleon or ∆ isobar we adopted the quasi-classical push-
ing and cranking approaches. The resulting energy correc-
tions are determined by inertial parameters describing the
response of the soliton as a whole with respect to a trans-
lation or rotation. We found the nontrivial result that the
inertial mass in the medium is identical with the internal
energy of the soliton. The rotational moment of inertia
was determined numerically.

It has turned out that the description of the medium as
a non-interacting gas of constituent quarks moving in the
solitonic mean field overestimates the effect of the medium
on the soliton. In particular, the expected decrease of the
∆N splitting at increasing temperature and density is re-
markably reduced by the quarks of the medium. At lower
temperatures, the Pauli blocking of low lying quark levels
by medium quarks dominates the behavior of such quan-
tities which are described by transition matrix elements
between different quark levels. It overcompensates, for in-
stance, the influence of the swelling effect on the moment
of inertia. Instead of increasing the moment of inertia de-
creases with increasing medium density.

As a result of its internal structure, which is generated
by a self-consistently determined mean field, the behav-
ior of the soliton energy in dependence on temperature
and density deviates remarkably from the corresponding
behavior of the constituent quark mass. The scaling prop-
erty between both quantities is noticeably disturbed since
the influence of the changed constituent mass (depth of
the well in the mean field) on the soliton energy is ac-
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companied by an variation of the size of the well in the
self-consistent mean field.

After subtracting translational and rotational correc-
tions the discrepancy gets even more pronounced since
translational and rotational corrections decrease with in-
creasing temperature and density. As a result the soliton
mass increases with increasing temperature while the con-
stituent mass decreases.

The swelling effect of the soliton in dependence on
medium temperature and density is well pronounced. It
does not only correspond to the increase of the radius of
the self-consistent mean field but is also related to the
polarization of the medium in the neighborhood of the
soliton. The latter intensifies the swelling with increasing
medium density but reduces the dependence on tempera-
ture.
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discussions.

Appendix

A Operator traces

Evaluating the trace Tr of an operator O(∂τ , h) containing
the differential operator ∂τ and the time-independent op-
erator h, which includes functional trace with anti-periodic
boundary conditions in the euclidean time-interval [0, 1/T ]
and traces tr over Dirac and Pauli matrices, we use the
representation

TrO(∂τ , h) =

1/T∫
0

dτ
∫

d3r tr 〈rτ | O(∂τ , h) |rτ 〉 (A.1)

=
∑
α

+∞∑
n=−∞

O(iωn, εα)

with the eigenvalues εα of h and the Matsubara frequen-
cies ωn=(2n+1)π T . At T→0, the sum over n has to be
replaced by an integral

lim
T→0

TTrO(∂τ , h) =
∑
α

+∞∫
−∞

dω
2π
O(iω, εα) . (A.2)

Within Schwinger’s proper-time regularization scheme the
regularized trace of the logarithm of a positively definite
single-particle operator O at T → 0 is given by

lim
T→0

TTrΛ lnO(∂τ , h) = −
∞∫

1/Λ2

ds
s

lim
T→0

TTr e−sO(∂τ ,h)

= −
∞∫

1/Λ2

ds
s

∑
α

+∞∫
−∞

dω
2π

e−sO(iω,εα) . (A.3)

When calculating traces such as in (A.1, A.2) we use the
relations

T

+∞∑
n=−∞

[
ln
(
ω2
n+a2

)
− ln

(
ω2
n+b2

)]
(A.4)

= a− b+ 2T ln
(
1+e−a/T

)
− 2T ln

(
1+e−b/T

)
T→0−→

+∞∫
−∞

dω
2π

[
ln
(
ω2+a2

)
− ln

(
ω2+b2

) ]
= |a|−|b| (A.5)

and

T

+∞∑
n=−∞

1
iωn + a

=
1
2
− 1

1 + ea/T
(A.6)

T→0−→
+∞∫
−∞

dω
2π

1
iω + a

=
sign(a)

2
. (A.7)

Evaluating products of two thermal propagators we use

T
+∞∑

n=−∞

1
iωn + a

1
iωn + b

(A.8)

=
T

b− a

+∞∑
n=−∞

[
1

iωn + a
− 1

iωn + b

]

=
1

a− b

[
1

1 + ea/T
− 1

1 + eb/T

]
T→0−→ 1

a− b
[
Θ(−a)−Θ(−b)

]
=

sign(a)−sign(b)
2(b− a) .(A.9)

The following identities for traces of the operators (B.1)
can be proven by means of the representations (A.1–A.3)
∞∫

1/Λ2

ds lim
T→0

TTr
[
e−sA(0) ∂2

τ

]
=

1
2

lim
T→0

TTrΛ lnA(0) , (A.10)

Tr
[
A(µ)−1∂2

τ

]
= −T

2
∂

∂T
Tr lnA(µ) , (A.11)

Tr
[
A(µ)−1µ(h−µ)

]
= −µ

2
∂

∂µ
Tr lnA(µ) , (A.12)

lim
T→0

TTr
[
A(µ)−1∂2

τ

]
=

1
2

lim
T→0

TTr lnA(µ) . (A.13)

In some of the equations above we have neglected an in-
finitely large constant which vanishes if one considers the
difference between two traces.
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B Evaluation of the mass tensor

Evaluating the mass tensor (52) we introduce the hermi-
tian operators

A(0)(µ) ≡ D(0)(µ)†D(0)(µ) = −∂2
τ + (h(0) − µ)2 (B.1)

and

A(0)(µ;v) ≡ D(0)(µ;v)†D(0)(µ;v) (B.2)

= A(0)(µ) +Bi(0)v
i − (v ·p)2 ,

with D(0)(µ) from (6, 7), D(0)(µ;v) from (30) with κO=
v ·p, and with the operators

Bi ≡ ∂

∂vi
A(µ;v)

∣∣∣∣
v=

= piD(µ)−D(µ)†pi (B.3)

= 2pi∂τ −
[
h, pi

]
= 2pi∂τ − iβ ∂i [σ(r) + iγ5τ ·π(r)] ,

Bi0 ≡
∂

∂vi
A0(µ;v)

∣∣∣∣
v=

(B.4)

= piD0(µ)−D0(µ)†pi = 2pi∂τ ,

which are independent of the chemical potential µ. Here
we consider more general meson fields σ(r) and π(r) which
are not necessarily restricted to hedgehog configurations
and to the chiral circle. The commutator

[
h, pi

]
in (B.3)

is given by the derivative of the mean field and vanishes
for h= h0. Following [11] we introduce the commutator
representation of Bi and Bi0

Bi(0) =
[
Ci, A(0)(0)

]
=
[
Ci, A(0)(µ) + 2µh(0)

]
(B.5)

with

Ci =
αi

2
− iri∂τ . (B.6)

First we treat the proper-time regularized sea contribu-
tion and notice that the first derivative of the exponential
function is given by

∂

∂vk
e−sA(0;v) (B.7)

= −s
1∫

0

dt e−(1−t)sA(0;v)
[
Bk−2pkplvl

]
e−tsA(0;v) .

At v=0 only Bk survives in the inner bracket and can be
replaced by the commutator (B.5). The integral is just the
commutator between Ck and e−sA(0) (see e. g. appendix of
[26])

∂

∂vk
e−sA(0;v)

∣∣∣∣
v=

=

1∫
0

dt e−(1−t)sA(0)

×
[
Ck,−sA(0)

]
e−tsA(0)

=
[
Ck, e−sA(0)

]
. (B.8)

The second derivative is obtained by differentiating (B.7).
At v=0 we can apply (B.8) and get

∂2

∂vi∂vk
e−sA(0;v)

∣∣∣∣
v=

(B.9)

= −s
1∫

0

dt
[
Ci, e−(1−t)sA(0)

]
Bk e−tsA(0)

+s

1∫
0

dt e−(1−t)sA(0)2pipk e−tsA(0)

−s
1∫

0

dt e−(1−t)sA(0)Bk
[
Ci, e−tsA(0)

]
.

Calculating the trace of expression (B.9) the various terms
can be rearranged and simplified. The integration over t
becomes trivial

Tr
∂2

∂vi∂vk
e−sA(0;v)

∣∣∣∣
v=

(B.10)

= 2Tr
[
s e−sA(0)

(
pipk +

1
2
[
Ci, Bk

] )]
and we get

Msea
ik = − ∂2

∂vi∂vk
Ωq,sea
Λ (v)

∣∣∣∣
v=

(B.11)

= −Nc

∞∫
1/Λ2

ds lim
T→0

TTr
[
e−sA(0)

(
pipk +

1
2
[
Ci, Bk

])

−1
2
e−sA0(0)

[
Ci, Bk0

]]
with the commutators[

Ci, Bk
]

= 2δik∂2
τ + iγi∂k (σ + iγ5τ ·π) , (B.12)[

Ci, Bk0
]

= 2δik∂2
τ . (B.13)

Notice that Tr
[
e−sA0(0)pipk

]
vanishes because of pipk =

i
2

[
A0(0), ripk

]
and the cyclic property of the trace.

Now we consider the medium contribution (16) to the
inertial mass and find

∂2

∂vi∂vk
Tr lnA(µ;v)

∣∣∣∣
v=

(B.14)

= −2Tr
[
A(µ)−1 pipk +

1
2
A(µ)−1BiA(µ)−1Bk

]
.

To evaluate the second term we apply the commutator
representation (B.5) of the operator Bi and get

Tr
[
A(µ)−1BiA(µ)−1Bk

]
(B.15)

= Tr
[
A(µ)−1 [Ci, A(µ) + 2µh]A(µ)−1Bk

]
= Tr

[
A(µ)−1 [Ci, A(µ)]A(µ)−1Bk

]
+2µTr

[
A(µ)−1 [Ci, h]A(µ)−1Bk

]
.
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The first term in (B.15) will be treated as in [11] yielding

Tr
[
A(µ)−1 [Ci, A(µ)]A(µ)−1Bk

]
= Tr

[
A(µ)−1[Ci, Bk]

]
.

(B.16)

To reformulate the second term we rewrite the commuta-
tor

[Ci, h] = − i
2
{ri, A(µ)}+ iD(µ)†riD(µ) (B.17)

with {A,B} ≡ AB +BA and get

Tr
[
A(µ)−1 [Ci, h]A(µ)−1Bk

]
(B.18)

= −iTr
[
A(µ)−1BkA(µ)−1

×
(

1
2
{
ri, A(µ)

}
−D(µ)†riD(µ)

)]
= −iTr

[
A(µ)−1 1

2
{Bk, ri}

]
+iTr

[(
D(µ)†

)−1
BkD(µ)−1ri

]
.

Using (B.1, B.3) we obtain

1
2
{ri, Bk} =

(
2ripk − iδik

)
∂τ − ri[h, pk] (B.19)

and

Tr
[(
D(µ)†

)−1
BkD(µ)−1ri

]
(B.20)

= Tr
[
A(µ)−1

(
pkriD(µ)−D(µ)†ripk

)]
= Tr

[
A(µ)−1

(
2ripk∂τ − iδikD(µ) + [ripk, h]

)]
.

The last term does not contribute to the trace since h
commutes with A(µ)−1. Altogether we have

∂2

∂vi∂vk
Tr lnA(µ;v)

∣∣∣∣
v=

= −Tr
[
A(µ)−1 (B.21)

×
(
2pipk + [Ci, Bk] + 2µ

[
(h− µ)δik + iri[h, pk]

] )]
and

∂2

∂vi∂vk
Tr lnA0(µ;v)

∣∣∣∣
v=

(B.22)

= −Tr
[
A0(µ)−1

(
[Ci, Bk0 ] + 2µ(h0 − µ)δik

)]
with the commutators [Ci, Bk] and [Ci, Bk0 ] given in
(B.12, B.13). Finally we get

Mmed
ik = − ∂2

∂vi∂vk
Ωq,med(T, µ;v)

∣∣∣∣
v=

(B.23)

= −NcTTr
[
A(µ)−1

(
pipk +

1
2
[Ci, Bk]

)
−1

2
A0(µ)−1[Ci, Bk0 ]

]

+Nc lim
T→0

TTr
[
A(0)−1

(
pipk +

1
2
[Ci, Bk]

)
−1

2
A0(0)−1[Ci, Bk0 ]

]
−NcTTr

[
A(µ)−1 µ

(
(h− µ)δik + iri[h, pk]

)
−A0(µ)−1µ(h0 − µ)δik

]
.
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